论文标题
一般维度稀疏和密集功能数据的更改点检测
Change-point Detection for Sparse and Dense Functional Data in General Dimensions
论文作者
论文摘要
我们研究了在一般D维空间上依次观察到的功能数据的变更点检测和定位的问题,在该空间中,我们允许功能曲线稀疏或密集采样。这种形式的数据自然出现在生物学,神经科学,气候学和金融等广泛应用中。为了实现这样的任务,我们提出了一种基于内核的算法,称为功能种子二进制分割(FSB)。 FSB在计算上是有效的,可以处理离散观察到的功能数据,并且对于重尾和时间依赖的观测值,理论上是合理的。此外,FSB适用于一般的D维域,这是功能数据变更点估计的文献中的第一个。我们显示了FSB在多个更改点估计中的一致性,并进一步提供了尖锐的定位错误率,该错误率取决于观察到的功能曲线的数量和每条曲线的采样频率。广泛的数值实验说明了FSB的有效性及其优于各种环境下文献中现有方法的优势。进一步进行了真实的数据应用,其中FSB的位置会改变归因于El Nino的南太平洋海面温度模式的点。
We study the problem of change-point detection and localisation for functional data sequentially observed on a general d-dimensional space, where we allow the functional curves to be either sparsely or densely sampled. Data of this form naturally arise in a wide range of applications such as biology, neuroscience, climatology, and finance. To achieve such a task, we propose a kernel-based algorithm named functional seeded binary segmentation (FSBS). FSBS is computationally efficient, can handle discretely observed functional data, and is theoretically sound for heavy-tailed and temporally-dependent observations. Moreover, FSBS works for a general d-dimensional domain, which is the first in the literature of change-point estimation for functional data. We show the consistency of FSBS for multiple change-point estimations and further provide a sharp localisation error rate, which reveals an interesting phase transition phenomenon depending on the number of functional curves observed and the sampling frequency for each curve. Extensive numerical experiments illustrate the effectiveness of FSBS and its advantage over existing methods in the literature under various settings. A real data application is further conducted, where FSBS localises change-points of sea surface temperature patterns in the south Pacific attributed to El Nino.