论文标题

CloudProfiler:基于TSC的节点分析和高通量数据摄入的云流动工作负载

Cloudprofiler: TSC-based inter-node profiling and high-throughput data ingestion for cloud streaming workloads

论文作者

Yang, Shinhyung, Jeong, Jiun, Scholz, Bernhard, Burgstaller, Bernd

论文摘要

为了进行实时分析计算,需要大数据流处理引擎才能以每秒数百万个事件的形式处理无界数据流。但是,当前的流媒体发动机表现出较低的吞吐量和高元组处理潜伏期。流媒体引擎构成由云中多个节点组成的复杂分布系统的事实使性能工程变得复杂。需要一种分析技术,能够以跨节点的高精度来测量时间持续时间。标准时钟同步技术(例如网络时间协议(NTP))仅限于毫秒准确性,因此无法使用。 我们提出了一种分析技术,该技术将节点的时戳计数器(TSC)关联,以测量流框架中事件的持续时间。 TSC关系的精度决定了测量持续时间的准确性。 TSC关系是在网络的静止期内进行的,以在数十微秒内实现准确性。我们提出了一个吞吐量控制的数据生成器,以可靠地确定流动机的可持续吞吐量。为了促进高通量数据摄入,我们提出了一个并发的对象工厂,该对象工厂将传入数据元组的供应式化开销从流媒体框架的关键路径上移开。在Google计算的Apache Storm流框架内对拟议技术的评估表明,数据摄取从$ 700 $ $ $ \ \ text {k} $ \ $ 4.68 $ $ $ \ $ \ text {m} $ tuplass每秒增加,该时间持续时间可以以$ 92 $ $ $ $ $μ的准确性为准。 NTP的数量,比先前的工作高一个数量级。

To conduct real-time analytics computations, big data stream processing engines are required to process unbounded data streams at millions of events per second. However, current streaming engines exhibit low throughput and high tuple processing latency. Performance engineering is complicated by the fact that streaming engines constitute complex distributed systems consisting of multiple nodes in the cloud. A profiling technique is required that is capable of measuring time durations at high accuracy across nodes. Standard clock synchronization techniques such as the network time protocol (NTP) are limited to millisecond accuracy, and hence cannot be used. We propose a profiling technique that relates the time-stamp counters (TSCs) of nodes to measure the duration of events in a streaming framework. The precision of the TSC relation determines the accuracy of the measured duration. The TSC relation is conducted in quiescent periods of the network to achieve accuracy in the tens of microseconds. We propose a throughput-controlled data generator to reliably determine the sustainable throughput of a streaming engine. To facilitate high-throughput data ingestion, we propose a concurrent object factory that moves the deserialization overhead of incoming data tuples off the critical path of the streaming framework. The evaluation of the proposed techniques within the Apache Storm streaming framework on the Google Compute Engine public cloud shows that data ingestion increases from $700$ $\text{k}$ to $4.68$ $\text{M}$ tuples per second, and that time durations can be profiled at a measurement accuracy of $92$ $μ\text{s}$, which is three orders of magnitude higher than the accuracy of NTP, and one order of magnitude higher than prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源