论文标题

通过空间和渠道注意发现动态功能性脑网络

Discovering Dynamic Functional Brain Networks via Spatial and Channel-wise Attention

论文作者

Liu, Yiheng, Ge, Enjie, He, Mengshen, Liu, Zhengliang, Zhao, Shijie, Hu, Xintao, Zhu, Dajiang, Liu, Tianming, Ge, Bao

论文摘要

使用深度学习模型来识别功能磁共振成像(fMRI)中的功能性脑网络(FBN)最近引起了人们的兴趣越来越高。但是,大多数现有的工作着重于检测来自整个fMRI信号的静态FBN,例如基于相关的功能连接性。滑动窗口是一种捕获FBN动力学的广泛使用的策略,但在每个时间步骤中代表固有的功能交互动力学方面仍然有限。通常需要手动设置FBN的数量。由于大脑中动态相互作用的复杂性,传统的线性和浅模型不足以识别每个时间步骤的复杂和空间重叠的FBN。在本文中,我们提出了一种新颖的空间和渠道注意自动编码器(SCAAE),以动态发现FBN。 SCAAE的核心思想是将注意机制应用于FBNS构造。具体而言,我们设计了两个注意力模块:1)空间关注(SA)模块,以发现空间域中的FBN和2)一个通道的注意力(CA)模块,以权衡自动选择FBN的通道。我们在ADHD200数据集上评估了我们的方法,结果表明,所提出的SCAAE方法可以有效地在每个fMRI时间步骤中有效地恢复FBN的动态变化,而无需使用滑动窗口。更重要的是,我们提出的混合注意模块(SA和CA)并不强制以先前方法为线性和独立性的假设,因此提供了一种新颖的方法来更好地理解动态功能性脑网络。

Using deep learning models to recognize functional brain networks (FBNs) in functional magnetic resonance imaging (fMRI) has been attracting increasing interest recently. However, most existing work focuses on detecting static FBNs from entire fMRI signals, such as correlation-based functional connectivity. Sliding-window is a widely used strategy to capture the dynamics of FBNs, but it is still limited in representing intrinsic functional interactive dynamics at each time step. And the number of FBNs usually need to be set manually. More over, due to the complexity of dynamic interactions in brain, traditional linear and shallow models are insufficient in identifying complex and spatially overlapped FBNs across each time step. In this paper, we propose a novel Spatial and Channel-wise Attention Autoencoder (SCAAE) for discovering FBNs dynamically. The core idea of SCAAE is to apply attention mechanism to FBNs construction. Specifically, we designed two attention modules: 1) spatial-wise attention (SA) module to discover FBNs in the spatial domain and 2) a channel-wise attention (CA) module to weigh the channels for selecting the FBNs automatically. We evaluated our approach on ADHD200 dataset and our results indicate that the proposed SCAAE method can effectively recover the dynamic changes of the FBNs at each fMRI time step, without using sliding windows. More importantly, our proposed hybrid attention modules (SA and CA) do not enforce assumptions of linearity and independence as previous methods, and thus provide a novel approach to better understanding dynamic functional brain networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源