论文标题

通过决策区域量化,改善对现实世界和最坏情况分布的鲁棒性转移

Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification

论文作者

Schwinn, Leo, Bungert, Leon, Nguyen, An, Raab, René, Pulsmeyer, Falk, Precup, Doina, Eskofier, Björn, Zanca, Dario

论文摘要

神经网络的可靠性对于它们在安全至关重要的应用中的使用至关重要。现有方法通常旨在改善神经网络的鲁棒性,以对现实世界的分布变化(例如,常见的腐败和扰动,空间转换和自然的对抗性例子)或最坏情况分布的变化(例如,优化的对抗性示例)。在这项工作中,我们提出了决策区域量化(DRQ)算法,以提高数据中任何可区分的预训练模型的鲁棒性,以对数据中的现实世界和最坏情况下的分布变化。 DRQ分析了当地决策区域在给定数据点附近的鲁棒性,以做出更可靠的预测。从理论上讲,我们通过表明它有效地平滑了决策表面中的杂种局部极值来激励DRQ算法。此外,我们提出了使用针对性和无目标的对抗攻击的实施。广泛的经验评估表明,DRQ在几个计算机视觉基准数据集上针对现实世界和最坏情况下的分布变化提高了对抗和非对抗训练的模型的鲁棒性。

The reliability of neural networks is essential for their use in safety-critical applications. Existing approaches generally aim at improving the robustness of neural networks to either real-world distribution shifts (e.g., common corruptions and perturbations, spatial transformations, and natural adversarial examples) or worst-case distribution shifts (e.g., optimized adversarial examples). In this work, we propose the Decision Region Quantification (DRQ) algorithm to improve the robustness of any differentiable pre-trained model against both real-world and worst-case distribution shifts in the data. DRQ analyzes the robustness of local decision regions in the vicinity of a given data point to make more reliable predictions. We theoretically motivate the DRQ algorithm by showing that it effectively smooths spurious local extrema in the decision surface. Furthermore, we propose an implementation using targeted and untargeted adversarial attacks. An extensive empirical evaluation shows that DRQ increases the robustness of adversarially and non-adversarially trained models against real-world and worst-case distribution shifts on several computer vision benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源