论文标题
在恶劣的城市环境中,马赛克摩西式划界匹配,以匹配风险感知的自主定位
Mosaic Zonotope Shadow Matching for Risk-Aware Autonomous Localization in Harsh Urban Environments
论文作者
论文摘要
全球导航卫星系统(GNSS)的风险感知城市本地化仍然是一个未解决的问题,因为经常误导用户的街道或街道。 3D地图辅助GNSS的重大进展使用基于网格的GNSS阴影匹配与AI驱动的视线线(LOS)分类器和基于服务器的处理,以提高本地化准确性,尤其是在跨街方向上。我们先前的工作引入了一个用于阴影匹配的新范式,该范式提出了具有计算高效的扎根式集合表示的设置值定位。尽管现有文献提高了准确性和效率,但阴影匹配理论的当前状态并不能满足风险感知自治系统的需求。我们将先前的工作扩展到提出马赛克划界阴影匹配(MZSM),该匹配(MZSM)采用了分类器 - 静态的多层马赛克架构来提供风险意识和可证明的城市定位保证。我们制定了一棵递归扩展的二进制树,该树通过设置操作将初始位置估计改进到较小的多面体中。一起,较小的多面体形成镶嵌物。我们将树枝上的树枝加重了用户在卫星视线视线并使用每个新卫星观察的范围内展开树的概率。我们的方法产生了一个确切的阴影匹配分布,我们可以从中保证用户本地化的不确定性界限。我们使用旧金山的3D建筑图进行高保真模拟,以验证我们的算法的风险感知改进。我们证明,MZSM在各种数据驱动的LOS分类器精确度上提供了可证明的保证,并且对现有方法的不确定性有了更精确的了解。我们验证了我们的基于树的结构是有效且可进行的,可以在0.63秒内从14个卫星中计算镶嵌物,并在卫星数中四次增长。
Risk-aware urban localization with the Global Navigation Satellite System (GNSS) remains an unsolved problem with frequent misdetection of the user's street or side of the street. Significant advances in 3D map-aided GNSS use grid-based GNSS shadow matching alongside AI-driven line-of-sight (LOS) classifiers and server-based processing to improve localization accuracy, especially in the cross-street direction. Our prior work introduces a new paradigm for shadow matching that proposes set-valued localization with computationally efficient zonotope set representations. While existing literature improved accuracy and efficiency, the current state of shadow matching theory does not address the needs of risk-aware autonomous systems. We extend our prior work to propose Mosaic Zonotope Shadow Matching (MZSM) that employs a classifier-agnostic polytope mosaic architecture to provide risk-awareness and certifiable guarantees on urban positioning. We formulate a recursively expanding binary tree that refines an initial location estimate with set operations into smaller polytopes. Together, the smaller polytopes form a mosaic. We weight the tree branches with the probability that the user is in line of sight of the satellite and expand the tree with each new satellite observation. Our method yields an exact shadow matching distribution from which we guarantee uncertainty bounds on the user localization. We perform high-fidelity simulations using a 3D building map of San Francisco to validate our algorithm's risk-aware improvements. We demonstrate that MZSM provides certifiable guarantees across varied data-driven LOS classifier accuracies and yields a more precise understanding of the uncertainty over existing methods. We validate that our tree-based construction is efficient and tractable, computing a mosaic from 14 satellites in 0.63 seconds and growing quadratically in the satellite number.