论文标题

标签锚定的对比度学习,以了解语言理解

Label Anchored Contrastive Learning for Language Understanding

论文作者

Zhang, Zhenyu, Zhao, Yuming, Chen, Meng, He, Xiaodong

论文摘要

对比度学习(CL)最近通过自学学习的学习,最近在计算机视觉,语音和自然语言处理领域取得了惊人的进步。但是,尚未完全探索CL进行监督设置的方法,尤其是对于自然语言理解分类任务。从直觉上讲,类标签本身具有执行硬阳性/负挖掘的内在能力,这对于CL至关重要。在此激励的情况下,我们提出了一种新颖的标签锚定对比度学习方法(称为Lacon),以进行语言理解。具体而言,设计了三个对比目标,包括以实例为中心的对比度损失(ICL),以标签为中心的对比损失(LCL)和标签嵌入正规器(LER)。我们的方法不需要任何专门的网络体系结构或任何额外的数据扩展,因此可以轻松地将其插入现有强大的预训练的预训练的语言模型中。与最先进的基线相比,LACON在流行的胶水和线索基准的数据集上提高了4.1%。此外,Lacon还显示出在少量射击和数据不平衡设置下的显着优势,该设置在LignGlue和LignClue基准测试任务方面的提高了9.4%。

Contrastive learning (CL) has achieved astonishing progress in computer vision, speech, and natural language processing fields recently with self-supervised learning. However, CL approach to the supervised setting is not fully explored, especially for the natural language understanding classification task. Intuitively, the class label itself has the intrinsic ability to perform hard positive/negative mining, which is crucial for CL. Motivated by this, we propose a novel label anchored contrastive learning approach (denoted as LaCon) for language understanding. Specifically, three contrastive objectives are devised, including a multi-head instance-centered contrastive loss (ICL), a label-centered contrastive loss (LCL), and a label embedding regularizer (LER). Our approach does not require any specialized network architecture or any extra data augmentation, thus it can be easily plugged into existing powerful pre-trained language models. Compared to the state-of-the-art baselines, LaCon obtains up to 4.1% improvement on the popular datasets of GLUE and CLUE benchmarks. Besides, LaCon also demonstrates significant advantages under the few-shot and data imbalance settings, which obtains up to 9.4% improvement on the FewGLUE and FewCLUE benchmarking tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源