论文标题
零范围系统中缓慢位点的凝结,边界条件和影响
Condensation, boundary conditions, and effects of slow sites in zero-range systems
论文作者
论文摘要
我们考虑$ 1 $ d离散的圆环$ \ mathbb {z}/n \ mathbb {z} $的零范围粒子系统中粒子质量的时空缩放极限,并具有有限的缺陷。当$ g(n)\ sim n^α$,$ 0 <α\ leq 1 $时,我们将重点放在两类的跳高率$ g $上,而当$ g $是一个有界函数时。在这样的模型中,普通站点$ k $的粒子可能会以$ g(n)$的邻居跳跃,这仅取决于$ k $ $ k $的粒子$ n $的数量。但是,在缺陷站点$ k_ {j,n} $,但是,当$ g(n)\ sim n^α$时,跳速速度降低至$λ_j^{ - 1} n^{ - β_j} g(n)$,而$ g(n)\ sim n^α$,以及$λ_j^^{ - 1} g(n)$ G(n)$ g $ n $ g $ whle $ g $是dounded的。在这里,$ n $是一个缩放参数,其中电网间距被视为$ 1/n $,并且时间将$ n^2 $加快。 从具有$ O(N)$相对熵的初始度量相对于不变度的度量开始,我们显示了宏观缺陷站点处的流体动力限制和表征边界行为$ x_j = \ lim_ {n \ upArow \ uparrow \ inparrow \ infty} k_ {j,n}/n}/n $,用于所有缺陷强度。对于$ g(n)\ sim n^α$的费率,在关键或超临界慢的位点($β_j=α$或$β_j>α$),相关的dirichlet边界条件是由于与不断变化的原子质量或缺陷处的冷凝物相互作用而产生的。不同的是,当$ g $有界时,在任何慢速站点($λ_j> 1 $)时,我们发现水动力密度必须在上面的阈值上方以反映缺陷强度的阈值界定。此外,由于与慢速位置上存储的原子质量的相互作用,相关的边界条件在周期性和差异性之间反弹。
We consider the space-time scaling limit of the particle mass in zero-range particle systems on a $1$D discrete torus $\mathbb{Z}/N\mathbb{Z}$ with a finite number of defects. We focus on two classes of increasing jump rates $g$, when $g(n)\sim n^α$, for $0<α\leq 1$, and when $g$ is a bounded function. In such a model, a particle at a regular site $k$ jumps equally likely to a neighbor with rate $g(n)$, depending only on the number of particles $n$ at $k$. At a defect site $k_{j,N}$, however, the jump rate is slowed down to $λ_j^{-1}N^{-β_j}g(n)$ when $g(n)\sim n^α$, and to $λ_j^{-1}g(n)$ when $g$ is bounded. Here, $N$ is a scaling parameter where the grid spacing is seen as $1/N$ and time is speeded up by $N^2$. Starting from initial measures with $O(N)$ relative entropy with respect to an invariant measure, we show the hydrodynamic limit and characterize boundary behaviors at the macroscopic defect sites $x_j = \lim_{N\uparrow \infty} k_{j, N}/N$, for all defect strengths. For rates $g(n)\sim n^α$, at critical or super-critical slow sites ($β_j=α$ or $β_j>α$), associated Dirichlet boundary conditions arise as a result of interactions with evolving atom masses or condensation at the defects. Differently, when $g$ is bounded, at any slow site ($λ_j>1$), we find the hydrodynamic density must be bounded above by a threshold value reflecting the strength of the defect. Moreover, due to interactions with masses of atoms stored at the slow sites, the associated boundary conditions bounce between being periodic and Dirichlet.