论文标题
一种使用贝叶斯网络量化Astroparpicle物理中位置重建不确定性的方法
A Method for Quantifying Position Reconstruction Uncertainty in Astroparticle Physics using Bayesian Networks
论文作者
论文摘要
强大的位置重建对于在Astroparticle物理学中的发现至关重要,因为仅考虑基准体积内的相互作用,可以显着降低背景。在这项工作中,我们首次提出了使用贝叶斯网络进行重建的方法,该方法提供了每个相互作用不确定性的方法。我们通过基于Xenonnt检测器设计(双相XENON时间反射室)作为概念证明,通过模拟数据证明了该方法的实用性。网络结构包括代表检测器中相互作用的2D位置的变量,进入气态相的电子数以及每个传感器在检测器顶部阵列中测量的命中。位置重建的精度(位置的真实和期望值之间的差异)可与最新方法相当 - 对于检测器的内部(<60 cm)和0.98 cm,〜0.12,传感器间距的RMS为0.69 cm,〜0.09,在传感器间距的内部差异为0.69 cm,在传感器间距的内部距离,〜0.12的传感器间距,〜0.12。更重要的是,直接计算每个相互作用位置的不确定性,这是其他重建方法不可能的。该方法发现检测器内部的3- $σ$置信区为11厘米$^2 $,在检测器墙壁附近21厘米$^2 $。我们发现贝叶斯网络框架非常适合重建位置问题。即使有几个简化的假设,此概念验证的表现也表明,这是提供每个相互作用不确定性的有前途的方法,可以扩展到能量重建和信号分类。
Robust position reconstruction is paramount for enabling discoveries in astroparticle physics as backgrounds are significantly reduced by only considering interactions within the fiducial volume. In this work, we present for the first time a method for position reconstruction using a Bayesian network which provides per interaction uncertainties. We demonstrate the utility of this method with simulated data based on the XENONnT detector design, a dual-phase xenon time-projection chamber, as a proof-of-concept. The network structure includes variables representing the 2D position of the interaction within the detector, the number of electrons entering the gaseous phase, and the hits measured by each sensor in the top array of the detector. The precision of the position reconstruction (difference between the true and expectation value of position) is comparable to the state-of-the-art methods -- an RMS of 0.69 cm, ~0.09 of the sensor spacing, for the inner part of the detector (<60 cm) and 0.98 cm, ~0.12 of the sensor spacing, near the wall of the detector (>60 cm). More importantly, the uncertainty of each interaction position was directly computed, which is not possible with other reconstruction methods. The method found a median 3-$σ$ confidence region of 11 cm$^2$ for the inner part of the detector and 21 cm$^2$ near the wall of the detector. We found the Bayesian network framework to be well suited to the problem of position reconstruction. The performance of this proof-of-concept, even with several simplifying assumptions, shows that this is a promising method for providing per interaction uncertainty, which can be extended to energy reconstruction and signal classification.