论文标题

E2FL:平等和公平的联合学习

E2FL: Equal and Equitable Federated Learning

论文作者

Mozaffari, Hamid, Houmansadr, Amir

论文摘要

联合学习(FL)使数据所有者可以在不共享其私人数据的情况下训练共享的全球模型。不幸的是,FL容易受到内在公平性问题的影响:由于客户数据分布的异质性,最终训练的模型可以在参与的客户中给予不成比例的优势。在这项工作中,我们提出了平等且公平的联合学习(E2FL),以同时保留两个主要的公平属性,即公平和平等,从而产生公平的联合学习模型。我们验证了E2FL在不同现实世界中的应用程序中的效率和公平性,并表明E2FL在所有个人客户中的效率,不同群体的公平性以及公平性方面优于现有基准。

Federated Learning (FL) enables data owners to train a shared global model without sharing their private data. Unfortunately, FL is susceptible to an intrinsic fairness issue: due to heterogeneity in clients' data distributions, the final trained model can give disproportionate advantages across the participating clients. In this work, we present Equal and Equitable Federated Learning (E2FL) to produce fair federated learning models by preserving two main fairness properties, equity and equality, concurrently. We validate the efficiency and fairness of E2FL in different real-world FL applications, and show that E2FL outperforms existing baselines in terms of the resulting efficiency, fairness of different groups, and fairness among all individual clients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源