论文标题

半监督的子空间聚类通过张量低率表示

Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation

论文作者

Jia, Yuheng, Lu, Guanxing, Liu, Hui, Hou, Junhui

论文摘要

在这封信中,我们提出了一种新颖的半监督子空间聚类方法,该方法能够同时增强初始监督信息并构建一个歧视性亲和力矩阵。通过将有限的监督信息表示为成对约束矩阵,我们观察到,用于群集的理想亲和力矩阵共享与理想成对约束矩阵相同的低级别结构。因此,我们将两个矩阵堆叠到3D张量中,其中施加了全局低级别的约束来促进亲和力矩阵构建并同步增强初始成对约束。此外,在获得更好的亲和力矩阵学习之前,我们使用输入样本的局部几何结构来补充全局低级别。所提出的模型被配制为拉普拉斯图正则凸的低级张量表示问题,该问题通过替代性迭代算法进一步求解。此外,我们建议通过增强成对约束来完善亲和力矩阵。八个常用基准数据集的全面实验结果证明了我们方法比最先进的方法的优越性。该代码可在https://github.com/guanxinglu/subspace-clustering上公开获取。

In this letter, we propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix. By representing the limited amount of supervisory information as a pairwise constraint matrix, we observe that the ideal affinity matrix for clustering shares the same low-rank structure as the ideal pairwise constraint matrix. Thus, we stack the two matrices into a 3-D tensor, where a global low-rank constraint is imposed to promote the affinity matrix construction and augment the initial pairwise constraints synchronously. Besides, we use the local geometry structure of input samples to complement the global low-rank prior to achieve better affinity matrix learning. The proposed model is formulated as a Laplacian graph regularized convex low-rank tensor representation problem, which is further solved with an alternative iterative algorithm. In addition, we propose to refine the affinity matrix with the augmented pairwise constraints. Comprehensive experimental results on eight commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods. The code is publicly available at https://github.com/GuanxingLu/Subspace-Clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源