论文标题

模块化体系结构促进了神经元网络中同步的噪声驱动控制

Modular architecture facilitates noise-driven control of synchrony in neuronal networks

论文作者

Yamamoto, Hideaki, Spitzner, F. Paul, Takemuro, Taiki, Buendía, Victor, Morante, Carla, Konno, Tomohiro, Sato, Shigeo, Hirano-Iwata, Ayumi, Priesemann, Viola, Muñoz, Miguel A., Zierenberg, Johannes, Soriano, Jordi

论文摘要

大脑功能既需要在专用电路中进行隔离的信息处理,又需要跨电路的集成以执行高级信息处理。实施这些看似相反的要求的一种可能方法是在同步和较少同步状态之间灵活切换。因此,了解如何通过网络体系结构和外部扰动的相互作用来控制复杂的同步模式是神经科学的核心挑战,但是这种相互作用背后的机制仍然难以捉摸。在这里,我们利用精确的神经工程技术来操纵培养的神经元网络,并表明模块化架构有助于异步刺激时有促进异步,从而使外部噪声成为同步的控制参数。然后,使用尖峰神经元模型,我们证明了外部噪声可以降低可用的突触资源的水平,从而使型间相互作用更加随机,从而有助于分解同步。最后,将随机型间相互作用的现象学配制为一种介观模型,该模型结合了信号传播的状态依赖性传输机制。综上所述,我们的结果证明了一种网络机制,通过该机制,异步输入调节可激发单元的结构化网络中的固有动力状态。

Brain functions require both segregated processing of information in specialized circuits, as well as integration across circuits to perform high-level information processing. One possible way to implement these seemingly opposing demands is by flexibly switching between synchronous and less synchronous states. Understanding how complex synchronization patterns are controlled by the interaction of network architecture and external perturbations is thus a central challenge in neuroscience, but the mechanisms behind such interactions remain elusive. Here, we utilise precision neuroengineering to manipulate cultured neuronal networks and show that a modular architecture facilitates desynchronization upon asynchronous stimulation, making external noise a control parameter of synchrony. Using spiking neuron models, we then demonstrate that external noise can reduce the level of available synaptic resources, which make intermodular interactions more stochastic and thereby facilitates the breakdown of synchrony. Finally, the phenomenology of stochastic intermodular interactions is formulated into a mesoscopic model that incorporates a state-dependent gating mechanism for signal propagation. Taken together, our results demonstrate a network mechanism by which asynchronous inputs tune the inherent dynamical state in structured networks of excitable units.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源