论文标题
脑皮质功能梯度通过注意网格卷积预测皮质折叠模式
Brain Cortical Functional Gradients Predict Cortical Folding Patterns via Attention Mesh Convolution
论文作者
论文摘要
由于Gyri和sulci,建议具有不同的功能作用的皮质折叠模式的两个基本的解剖结构块,因此从大脑功能到陀螺仪模式的精确映射可以为生物学和人工神经网络提供深刻的见解。然而,到目前为止,由于它们之间的高度非线性关系,巨大的个体间变异性以及对大脑功能区域/网络分布作为马赛克的高度非线性关系,因此缺乏通用理论和有效的计算模型,因此尚未考虑它们的空间模式。我们采用了源自静止状态fMRI的大脑功能梯度,以嵌入功能连通性模式的“逐渐”变化,并开发了一种新型的注意网状卷积模型,以预测单个大脑上的皮质陀螺仪分割图。网格上的卷积考虑了功能梯度的空间组织和皮质板上的折叠模式,而新设计的通道注意块则增强了不同功能梯度对皮质折叠预测的贡献的解释性。实验表明,通过我们的模型的预测性能优于其他最先进的模型。此外,我们发现主要的功能梯度对折叠预测的贡献较小。在最后一层的激活图上,在高度活化的区域的边界上发现了一些精心研究的皮质地标。这些结果和发现表明,专门设计的人工神经网络可以提高大脑功能和皮质折叠模式之间映射的精度,并可以为神经科学提供宝贵的脑解剖结构功能关系的见解。
Since gyri and sulci, two basic anatomical building blocks of cortical folding patterns, were suggested to bear different functional roles, a precise mapping from brain function to gyro-sulcal patterns can provide profound insights into both biological and artificial neural networks. However, there lacks a generic theory and effective computational model so far, due to the highly nonlinear relation between them, huge inter-individual variabilities and a sophisticated description of brain function regions/networks distribution as mosaics, such that spatial patterning of them has not been considered. we adopted brain functional gradients derived from resting-state fMRI to embed the "gradual" change of functional connectivity patterns, and developed a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains. The convolution on mesh considers the spatial organization of functional gradients and folding patterns on a cortical sheet and the newly designed channel attention block enhances the interpretability of the contribution of different functional gradients to cortical folding prediction. Experiments show that the prediction performance via our model outperforms other state-of-the-art models. In addition, we found that the dominant functional gradients contribute less to folding prediction. On the activation maps of the last layer, some well-studied cortical landmarks are found on the borders of, rather than within, the highly activated regions. These results and findings suggest that a specifically designed artificial neural network can improve the precision of the mapping between brain functions and cortical folding patterns, and can provide valuable insight of brain anatomy-function relation for neuroscience.