论文标题

DPROQ:用于蛋白质复合物结构评估的封闭式变压器

DProQ: A Gated-Graph Transformer for Protein Complex Structure Assessment

论文作者

Chen, Xiao, Morehead, Alex, Liu, Jian, Cheng, Jianlin

论文摘要

蛋白质相互作用以形成复合物以执行基本的生物学功能。已经开发了计算方法来预测蛋白质复合物的结构。然而,蛋白质复合结构预测中的一个重要挑战是估计预测蛋白质复合物结构的质量,而不了解相应的天然结构。然后,这些估计可以用于选择高质量的预测复杂结构,以促进生物医学研究,例如蛋白质功能分析和药物发现。我们用DPROQ挑战了这一重要任务,DPROQ引入了封闭式邻域调节图形变压器(GGT),旨在预测3D蛋白质复合结构的质量。值得注意的是,我们将节点和边缘门融合在新颖的图形变压器框架中,以控制图消息传递期间的信息流。我们在这项工作中公开提供的四个新开发的数据集上培训和评估DPROQ。我们严格的实验表明,DPROQ在排名蛋白质复杂结构中实现了最先进的性能。

Proteins interact to form complexes to carry out essential biological functions. Computational methods have been developed to predict the structures of protein complexes. However, an important challenge in protein complex structure prediction is to estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. We challenge this significant task with DProQ, which introduces a gated neighborhood-modulating Graph Transformer (GGT) designed to predict the quality of 3D protein complex structures. Notably, we incorporate node and edge gates within a novel Graph Transformer framework to control information flow during graph message passing. We train and evaluate DProQ on four newly-developed datasets that we make publicly available in this work. Our rigorous experiments demonstrate that DProQ achieves state-of-the-art performance in ranking protein complex structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源