论文标题

基于变压器的临床安全分割的分布式检测

Transformer-based out-of-distribution detection for clinically safe segmentation

论文作者

Graham, Mark S, Tudosiu, Petru-Daniel, Wright, Paul, Pinaya, Walter Hugo Lopez, Jean-Marie, U, Mah, Yee, Teo, James, Jäger, Rolf H, Werring, David, Nachev, Parashkev, Ourselin, Sebastien, Cardoso, M Jorge

论文摘要

在临床环境中,部署的图像处理系统至关重要,对于他们可能遇到的全部投入,尤其是没有自信地错误的预测。最受欢迎的安全处理方法是培训可以提供衡量其不确定性的网络,但是这些往往无法获得远远超出培训数据分配的输入。最近,已经提出了一种生成建模方法作为替代方案。这些可以显式量化数据样本的可能性,在进行进一步处理之前过滤所有分布(OOD)样本。在这项工作中,我们专注于图像分割,并评估Far-ood和近ood案例中的几种网络不确定性方法,以完成头部CTS中的出血的任务。我们发现所有这些方法不适合安全细分,因为它们在操作OOD时提供了自信的错误预测。我们建议使用VQ-GAN执行完整的3D OOD检测,以提供图像和变压器的压缩潜在表示,以估计数据的可能性。我们的方法成功地识别了远处和近似案例中的图像。我们发现图像的可能性与模型分割的质量之间存在牢固的关系,这使得该方法可容纳不适合分割的图像。据我们所知,这是第一次应用变压器对3D图像数据进行OOD检测。代码可在github.com/marksgraham/transformer-ood上找到。

In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model's segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data. Code is available at github.com/marksgraham/transformer-ood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源