论文标题
通过地面到卫星跨视图图像检索地理定位
Geo-Localization via Ground-to-Satellite Cross-View Image Retrieval
论文作者
论文摘要
围绕目标的观点和无关的内容的巨大变化始终阻碍准确的图像检索及其后续任务。在本文中,我们研究了一项极具挑战性的任务:鉴于地标的地面图像,我们旨在通过搜索其相应的卫星视图图像来实现跨视图的地理位置定位。具体而言,挑战来自地面视图和卫星视图之间的差距,其中不仅包括大型观点变化(从前景到最高视图,地标的某些部分可能是看不见的),而且还包括高度无关紧要的背景(目标地标往往隐藏在其他周围的建筑物中),从而使难以学习常见的代表或合适的映射。 为了解决此问题,我们利用无人机视图作为地面视图和卫星视图域之间的桥梁。我们提出了同行学习和交叉扩散(PLCD)框架。 PLCD由三个部分组成:1)跨地面视图和无人机观看的同行学习,以找到可见的零件,以使地面无人机跨视图表示学习; 2)基于补丁的网络,用于卫星无人机跨视图表示学习; 3)地面无人机空间和卫星无人机空间之间的交叉扩散。在大学 - 毕业生和大学 - 山区的数据集上进行的广泛实验表明,我们的方法的表现明显优于最先进的实验。
The large variation of viewpoint and irrelevant content around the target always hinder accurate image retrieval and its subsequent tasks. In this paper, we investigate an extremely challenging task: given a ground-view image of a landmark, we aim to achieve cross-view geo-localization by searching out its corresponding satellite-view images. Specifically, the challenge comes from the gap between ground-view and satellite-view, which includes not only large viewpoint changes (some parts of the landmark may be invisible from front view to top view) but also highly irrelevant background (the target landmark tend to be hidden in other surrounding buildings), making it difficult to learn a common representation or a suitable mapping. To address this issue, we take advantage of drone-view information as a bridge between ground-view and satellite-view domains. We propose a Peer Learning and Cross Diffusion (PLCD) framework. PLCD consists of three parts: 1) a peer learning across ground-view and drone-view to find visible parts to benefit ground-drone cross-view representation learning; 2) a patch-based network for satellite-drone cross-view representation learning; 3) a cross diffusion between ground-drone space and satellite-drone space. Extensive experiments conducted on the University-Earth and University-Google datasets show that our method outperforms state-of-the-arts significantly.