论文标题

球体s^3中局部凸曲线空间的同质型类型

Homotopy type of spaces of locally convex curves in the sphere S^3

论文作者

Alves, Emília, Goulart, Victor, Saldanha, Nicolau C.

论文摘要

由于几个原因,已经研究了球体$ s^n $的本地凸(或非等级)曲线,包括研究$ n+1 $的线性普通微分方程。服用Frenet帧使我们能够在组中获得相应的曲线$γ$ $ spin_ {n+1} $。令$ l_n(Z_0; Z_1)$为此类曲线$γ$的空间,并有规定的端点$γ(0)= Z_0 $,$γ(1)= Z_1 $。本文的目的是确定所有$ z_0,z_1 \ in spin_4 $中的空间的同型类型$ l_3(z_0; z_1)$。作为推论,我们以$ s^3 $或$ p^3 $中的封闭本地凸曲线的空间的同置类型的类型。 以前有许多论文解决相关问题。早期论文解决了$ s^2 $中的曲线的相应问题。另一个先前的结果(使用B. shapiro)将问题降低到$ z_0 = 1 $和$ z_1 \ quat_4 $中的$ quat_4 \ subset spin_4 $是订单$ 16 $的有限组。最近的一篇论文表明,对于$ z_1 \,在quat_4 \ smallsetminus z(quat_4)$中,我们有一个同型等价$ l_3(1; z_1)\ ofωspin_4$。在本文中,我们计算$ l_3(1; z_1)$的同型类型$ z_1 \ in z(quat_4)$:相当于$ωspin_4$的楔形,带有无限可计数的球体(如$ n = 2 $)。 可以将证明的结构与$ n = 2 $的情况进行比较,但是某些步骤需要创建新理论,涉及代数和组合。我们构建显式子集$ y \ subset l_n(z_0; z_1)$,其中包含$ y \ y \ subsetωspin_{n+1}(z__0; z_1)$是同质的同等性。对于$ n = 2 $,有一个简单的几何描述为$ y $;对于$ n = 3 $,自然构造的基于此类曲线的行程理论。 $ l_n(1; z_1)$中的曲线的行程是字母$ s_ {n+1} \ smallSetMinus \ {e \} $中的一个有限单词。

Locally convex (or nondegenerate) curves in the sphere $S^n$ have been studied for several reasons, including the study of linear ordinary differential equations of order $n+1$. Taking Frenet frames allows us to obtain corresponding curves $Γ$ in the group $Spin_{n+1}$. Let $L_n(z_0;z_1)$ be the space of such curves $Γ$ with prescribed endpoints $Γ(0) = z_0$, $Γ(1) = z_1$. The aim of this paper is to determine the homotopy type of the spaces $L_3(z_0;z_1)$ for all $z_0, z_1 \in Spin_4$. As a corollary, we obtain the homotopy type of the space of closed locally convex curves in either $S^3$ or $P^3$. There are many previous papers addressing related questions. An early paper solves the corresponding problem for curves in $S^2$. Another previous result (with B. Shapiro) reduces the problem to $z_0 = 1$ and $z_1 \in Quat_4$ where $Quat_4 \subset Spin_4$ is a finite group of order $16$. A more recent paper shows that for $z_1 \in Quat_4 \smallsetminus Z(Quat_4)$ we have a homotopy equivalence $L_3(1;z_1) \approx ΩSpin_4$. In this paper we compute the homotopy type of $L_3(1;z_1)$ for $z_1 \in Z(Quat_4)$: it is equivalent to the wedge of $ΩSpin_4$ with an infinite countable family of spheres (as for the case $n = 2$). The structure of the proof can be compared to that of the case $n = 2$ but some of the steps require the creation of new theories, involving algebra and combinatorics. We construct explicit subsets $Y \subset L_n(z_0;z_1)$ for which the inclusion $Y \subset ΩSpin_{n+1}(z_0;z_1)$ is a homotopy equivalence. For $n = 2$, there is a simple geometric description of $Y$; for $n = 3$, the far less natural construction is based on the theory of itineraries of such curves. The itinerary of a curve in $L_n(1;z_1)$ is a finite word in the alphabet $S_{n+1} \smallsetminus \{e\}$ of nontrivial permutations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源