论文标题
在拉格朗日框架下具有多个对流的时空跨互相关功能
Spatio-Temporal Cross-Covariance Functions under the Lagrangian Framework with Multiple Advections
论文作者
论文摘要
在分析大多数环境和地球科学变量(例如不同水平的污染物浓度)中的时空依赖性时,可以观察到特殊特性:协方差和跨跨构造在某些方向上更强。该特性归因于自然力的存在,例如风,这些力引起了这些变量的运输和分散。这种时空动力学促使使用拉格朗日参考框架与任何高斯时空的地统计模型一起使用。在这个建模框架下,在拉格朗日框架下诞生了一个全新的类别,被称为一类时空协方差函数,在单变量环境中已经建立了几个发展,在固定和非组织的配方中,但在多元式情况下却较少。尽管这种建模方法有许多进步,但尚未努力探讨使用多个对流的情况,尤其是在涉及几个变量的情况下。考虑多个对流的核算将使拉格朗日框架成为建模现实的多元传输方案的更可行的方法。在这项工作中,我们建立了一类拉格朗日时空的跨跨互相关函数,具有多个对流,研究其特性,并证明了其在沙特阿拉伯颗粒物颗粒物的双变量污染物数据集上的使用。
When analyzing the spatio-temporal dependence in most environmental and earth sciences variables such as pollutant concentrations at different levels of the atmosphere, a special property is observed: the covariances and cross-covariances are stronger in certain directions. This property is attributed to the presence of natural forces, such as wind, which cause the transport and dispersion of these variables. This spatio-temporal dynamics prompted the use of the Lagrangian reference frame alongside any Gaussian spatio-temporal geostatistical model. Under this modeling framework, a whole new class was birthed and was known as the class of spatio-temporal covariance functions under the Lagrangian framework, with several developments already established in the univariate setting, in both stationary and nonstationary formulations, but less so in the multivariate case. Despite the many advances in this modeling approach, efforts have yet to be directed to probing the case for the use of multiple advections, especially when several variables are involved. Accounting for multiple advections would make the Lagrangian framework a more viable approach in modeling realistic multivariate transport scenarios. In this work, we establish a class of Lagrangian spatio-temporal cross-covariance functions with multiple advections, study its properties, and demonstrate its use on a bivariate pollutant dataset of particulate matter in Saudi Arabia.