论文标题

无限投影纠结状态的时间演变:切线空间中的梯度张量更新

Time evolution of an infinite projected entangled pair state: a gradient tensor update in the tangent space

论文作者

Dziarmaga, Jacek

论文摘要

无限2D的时间演变可以通过应用于无限投影纠缠状状态(IPEPS)的铃木 - 漫游器分解来描述许多身体量子晶格系统。每个猪门门都会增加张量网络的键尺寸,即$ d $,必须以最小化合适的误差度量的方式将其截断。本文超出了简化的错误措施(例如完整更新(FU)中使用的错误措施,简单更新(SU)及其中间邻域张量更新(NTU) - 并直接最大程度地最大程度地提高了随着债券维度增加的确切IPEP与新iPeps的重叠。优化是在IPEPS变化歧管的切线空间中执行的。该梯度张量更新(GTU)通过模拟2D量子ISING模型中的横向场突然淬火和同一2D系统中的量子kibble-Zurek机制进行了基准测试。

Time evolution of an infinite 2D many body quantum lattice system can be described by the Suzuki-Trotter decomposition applied to the infinite projected entangled pair state (iPEPS). Each Trotter gate increases the bond dimension of the tensor network, $D$, that has to be truncated back in a way that minimizes a suitable error measure. This paper goes beyond simplified error measures -- like the one used in the full update (FU), the simple update (SU), and their intermediate neighborhood tensor update (NTU) -- and directly maximizes an overlap between the exact iPEPS with the increased bond dimension and the new iPEPS with the truncated one. The optimization is performed in a tangent space of the iPEPS variational manifold. This gradient tensor update (GTU) is benchmarked by a simulation of a sudden quench of a transverse field in the 2D quantum Ising model and the quantum Kibble-Zurek mechanism in the same 2D system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源