论文标题

KRNET:有效的知识重播

KRNet: Towards Efficient Knowledge Replay

论文作者

Zhang, Yingying, Zhong, Qiaoyong, Xie, Di, Pu, Shiliang

论文摘要

知识重播技术已被广泛用于许多任务,例如持续学习和连续的领域适应。关键在于如何有效地编码从先前数据中提取的知识并在当前培训过程中重播它们。自动编码器是一个简单而有效的模型。但是,自动编码器中存储的潜在代码的数量随数据的规模而线性增加,并且训练有素的编码器对于重播阶段是多余的。在本文中,我们提出了一个新颖有效的知识记录网络(KRNET),该网络将任意样本标识号直接映射到相应的基准。与自动编码器相比,我们的KRNET需要大幅度($ 400 \ times $)的潜在代码存储成本,并且可以在没有编码器子网络的情况下进行培训。广泛的实验验证了KRNET的效率,作为展示柜,它已成功地应用于持续学习的任务。

The knowledge replay technique has been widely used in many tasks such as continual learning and continuous domain adaptation. The key lies in how to effectively encode the knowledge extracted from previous data and replay them during current training procedure. A simple yet effective model to achieve knowledge replay is autoencoder. However, the number of stored latent codes in autoencoder increases linearly with the scale of data and the trained encoder is redundant for the replaying stage. In this paper, we propose a novel and efficient knowledge recording network (KRNet) which directly maps an arbitrary sample identity number to the corresponding datum. Compared with autoencoder, our KRNet requires significantly ($400\times$) less storage cost for the latent codes and can be trained without the encoder sub-network. Extensive experiments validate the efficiency of KRNet, and as a showcase, it is successfully applied in the task of continual learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源