论文标题

Poincaré异质图神经网络用于顺序推荐

Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation

论文作者

Guo, Naicheng, Liu, Xiaolei, Li, Shaoshuai, Ma, Qiongxu, Gao, Kaixin, Han, Bing, Zheng, Lin, Guo, Xiaobo

论文摘要

顺序推荐(SR)通过从用户行为演变中捕获顺序模式来学习用户的偏好。正如许多作品中所讨论的那样,SR的用户项目相互作用通常呈现固有的幂律分布,可以将其提升到类似层次结构的结构。以前的方法通常通过在欧几里得空间下从经验上进行用户项目分段来处理此类层次信息,这可能会导致在实际在线场景中对用户项目表示的扭曲。在本文中,我们提出了一个名为PHGR的基于Poincaré的异质图神经网络,以同时模拟SR SRESARIOS数据中包含的顺序模式信息以及层次信息。具体而言,为了明确捕获层次信息,我们首先通过对所有用户项目交互来构建加权用户 - 项目异质图,从而从全局视图中提高每个用户的感知域。然后,全局表示的输出将用于补充局部有向项目 - 项目均质图卷积。通过定义新型双曲线内部产品操作员,全球图和局部图表示学习是直接在庞加莱球中进行的,而不是庞加莱球和欧几里得空间之间常用的投影操作,这可能会减轻一般双向翻译过程的累积错误问题。此外,为了明确捕获顺序依赖信息,我们在庞加莱球空间下设计了两种类型的时间注意操作。公共和金融行业的数据集进行的经验评估表明,PHGR的表现优于几种比较方法。

Sequential recommendation (SR) learns users' preferences by capturing the sequential patterns from users' behaviors evolution. As discussed in many works, user-item interactions of SR generally present the intrinsic power-law distribution, which can be ascended to hierarchy-like structures. Previous methods usually handle such hierarchical information by making user-item sectionalization empirically under Euclidean space, which may cause distortion of user-item representation in real online scenarios. In this paper, we propose a Poincaré-based heterogeneous graph neural network named PHGR to model the sequential pattern information as well as hierarchical information contained in the data of SR scenarios simultaneously. Specifically, for the purpose of explicitly capturing the hierarchical information, we first construct a weighted user-item heterogeneous graph by aliening all the user-item interactions to improve the perception domain of each user from a global view. Then the output of the global representation would be used to complement the local directed item-item homogeneous graph convolution. By defining a novel hyperbolic inner product operator, the global and local graph representation learning are directly conducted in Poincaré ball instead of commonly used projection operation between Poincaré ball and Euclidean space, which could alleviate the cumulative error issue of general bidirectional translation process. Moreover, for the purpose of explicitly capturing the sequential dependency information, we design two types of temporal attention operations under Poincaré ball space. Empirical evaluations on datasets from the public and financial industry show that PHGR outperforms several comparison methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源