论文标题

提问者驱动的方法来揭示口头否定的肯定解释

A Question-Answer Driven Approach to Reveal Affirmative Interpretations from Verbal Negations

论文作者

Hossain, Md Mosharaf, Holman, Luke, Kakileti, Anusha, Kao, Tiffany Iris, Brito, Nathan Raul, Mathews, Aaron Abraham, Blanco, Eduardo

论文摘要

本文探讨了一种提问者驱动的方法,以揭示口头否定的肯定解释(即,当否定提示在语法上修改动词时)。我们创建了一个由4,472个口头否定组成的新语料库,发现其中有67.1%的人确实发生了事件。注释者为3,001个否定的否定产生并回答了7,277个问题,这些问题传达了肯定的解释。我们首先提出的问题是将否定性解释为自然语言推断(NLI)分类任务。实验结果表明,经过现有NLI语料库训练的最先进的变压器不足以揭示肯定的解释。但是,我们还观察到,微调会带来微小的改进。除了NLI分类外,我们还探讨了直接从与T5变压器的否定中产生肯定解释的更现实的任务。我们得出的结论是,由于T5的表现非常低,因此一代任务仍然是一个挑战。

This paper explores a question-answer driven approach to reveal affirmative interpretations from verbal negations (i.e., when a negation cue grammatically modifies a verb). We create a new corpus consisting of 4,472 verbal negations and discover that 67.1% of them convey that an event actually occurred. Annotators generate and answer 7,277 questions for the 3,001 negations that convey an affirmative interpretation. We first cast the problem of revealing affirmative interpretations from negations as a natural language inference (NLI) classification task. Experimental results show that state-of-the-art transformers trained with existing NLI corpora are insufficient to reveal affirmative interpretations. We also observe, however, that fine-tuning brings small improvements. In addition to NLI classification, we also explore the more realistic task of generating affirmative interpretations directly from negations with the T5 transformer. We conclude that the generation task remains a challenge as T5 substantially underperforms humans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源