论文标题
降低曲线的hodge至singular对应关系
Hodge-to-singular correspondence for reduced curves
论文作者
论文摘要
我们研究了$ \ mathrm {gl} _n $的Hitchin系统的分解定理的汇总,该分解是在降低的光谱曲线的位置上的。一个关键的成分是这些汇总与高血压品种的拓扑之间的新对应关系。与普通希格斯束的模量空间的相交共同体学组相交,与该程度相交。我们描述了这种依赖性。
We study the summands of the decomposition theorem for the Hitchin system for $\mathrm{GL}_n$, in arbitrary degree, over the locus of reduced spectral curves. A key ingredient is a new correspondence between these summands and the topology of hypertoric quiver varieties. In contrast to the case of meromorphic Higgs fields, the intersection cohomology groups of moduli spaces of regular Higgs bundles depend on the degree. We describe this dependence.