论文标题
从小时到秒:通过可区分显微镜进行100倍的定量相成像速度更快
From Hours to Seconds: Towards 100x Faster Quantitative Phase Imaging via Differentiable Microscopy
论文作者
论文摘要
从代谢组学到组织病理学的应用,定量相显微镜(QPM)是一种强大的无标签成像模式。尽管快速多路复用成像传感器和基于深度学习的反求解器取得了重大进展,但QPM的吞吐量目前受电子硬件速度的限制。补充,为了进一步改善吞吐量,我们建议以压缩形式获取图像,以便可以将更多信息传输到现有的电子硬件瓶颈之外。为此,我们提出了一个可学习的光学压缩 - 压缩框架,该框架可以学习特定于内容的功能。提出的可区分定量相显微镜($ \partialμ$)首先使用可学习的光学特征提取器作为图像压缩机。然后,由成像传感器捕获这些网络产生的强度表示。最后,在电子硬件上运行的重建网络将QPM图像解压缩。在数值实验中,所提出的系统可在$ \ sim $ \ sim 0.90 $和$ \ sim 30 $ db的单元格上保持$ \ times $ 64的压缩。我们的实验证明的结果为实现端到端优化(即光学和电子)紧凑型QPM系统开辟了新的途径,该系统可能会提供前所未有的吞吐量改进。
With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the speed of electronic hardware. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form such that more information can be transferred beyond the existing electronic hardware bottleneck. To this end, we present a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy ($\partial μ$) first uses learnable optical feature extractors as image compressors. The intensity representation produced by these networks is then captured by the imaging sensor. Finally, a reconstruction network running on electronic hardware decompresses the QPM images. In numerical experiments, the proposed system achieves compression of $\times$ 64 while maintaining the SSIM of $\sim 0.90$ and PSNR of $\sim 30$ dB on cells. The results demonstrated by our experiments open up a new pathway for achieving end-to-end optimized (i.e., optics and electronic) compact QPM systems that may provide unprecedented throughput improvements.