论文标题
用图换向器来压缩时间网络的年表
Compressing the chronology of a temporal network with graph commutators
论文作者
论文摘要
时间网络上的动力学研究通常代表网络是一系列“快照”,静态网络在短时间内活跃的静态网络。我们认为,如果这样做对上覆的动态影响不大,则可以汇总连续的快照。我们提出了一种通过逐步组合矩阵换向器具有最小动力学效果的快照对来压缩网络时间顺序的方法。我们将此方法应用于实际接触数据的流行模型中,并发现它允许显着压缩,同时仍然忠于流行动力学。
Studies of dynamics on temporal networks often represent the network as a series of "snapshots," static networks active for short durations of time. We argue that successive snapshots can be aggregated if doing so has little effect on the overlying dynamics. We propose a method to compress network chronologies by progressively combining pairs of snapshots whose matrix commutators have the smallest dynamical effect. We apply this method to epidemic modeling on real contact tracing data and find that it allows for significant compression while remaining faithful to the epidemic dynamics.