论文标题
$ g $ -Subdiffusion方程式描述了瞬态亚扩散
$G$-subdiffusion equation that describes transient subdiffusion
论文作者
论文摘要
A $ G $ - 与另一个功能$ G $相对于另一个功能的分数CAPUTO时间衍生物的细节扩散方程用于描述与参数$α$和$d_α$连续过渡的过程,以用参数将$β$ $β$和$d_β$ sublediffusion。参数是由扩散粒子$σ^2(t)= 2d_i t^i/γ(1+i)$,$ i =α,β$的均方根位移的时间演变所定义的。功能$ g $以“中间”时间控制该过程。 $ g $ - 次扩散方程比具有恒定参数的“普通”分数亚扩散方程更笼统,它在与更改参数的建模扩散过程中具有潜在的广泛应用。
A $g$--subdiffusion equation with fractional Caputo time derivative with respect to another function $g$ is used to describe a process of a continuous transition from subdiffusion with parameters $α$ and $D_α$ to subdiffusion with parameters $β$ and $D_β$. The parameters are defined by the time evolution of the mean square displacement of diffusing particle $σ^2(t)=2D_i t^i/Γ(1+i)$, $i=α,β$. The function $g$ controls the process at "intermediate" times. The $g$--subdiffusion equation is more general than the "ordinary" fractional subdiffusion equation with constant parameters, it has potentially wide application in modelling diffusion processes with changing parameters.