论文标题

随时间变化的大脑数据集的深度表示

Deep Representations for Time-varying Brain Datasets

论文作者

Lin, Sikun, Tang, Shuyun, Grafton, Scott, Singh, Ambuj

论文摘要

在大脑中找到适当的动态活动的适当表示对于许多下游应用至关重要。由于其高度动态的性质,暂时平均fMRI(功能磁共振成像)只能提供潜在的大脑活动的狭窄视图。以前的作品缺乏学习和解释大脑体系结构中潜在动态的能力。本文构建了一个有效的图形神经网络模型,该模型均结合了从DWI(扩散加权成像)获得的区域映射的fMRI序列和结构连接性。我们通过学习样品级自适应邻接矩阵并进行新型多分辨率内群平滑来发现潜在大脑动力学的良好表示。我们还将输入归因于具有集成梯度的输入,这使我们能够针对每个任务推断(1)高度涉及的大脑连接和子网络,(2)成像序列的时间密钥帧来表征任务,以及(3)歧视各个受试者的子网络。这种识别临界子网的能力,该子网表征在异质任务和个人中信号状态的表征对神经科学和其他科学领域至关重要。广泛的实验和消融研究表明,我们所提出的方法在空间图信号建模中的优越性和效率,具有对大脑动力学的洞察力解释。

Finding an appropriate representation of dynamic activities in the brain is crucial for many downstream applications. Due to its highly dynamic nature, temporally averaged fMRI (functional magnetic resonance imaging) can only provide a narrow view of underlying brain activities. Previous works lack the ability to learn and interpret the latent dynamics in brain architectures. This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities obtained from DWI (diffusion-weighted imaging) as inputs. We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices and performing a novel multi-resolution inner cluster smoothing. We also attribute inputs with integrated gradients, which enables us to infer (1) highly involved brain connections and subnetworks for each task, (2) temporal keyframes of imaging sequences that characterize tasks, and (3) subnetworks that discriminate between individual subjects. This ability to identify critical subnetworks that characterize signal states across heterogeneous tasks and individuals is of great importance to neuroscience and other scientific domains. Extensive experiments and ablation studies demonstrate our proposed method's superiority and efficiency in spatial-temporal graph signal modeling with insightful interpretations of brain dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源