论文标题

关于没有量子状态的半经典重力的初始值问题

On the initial value problem for semiclassical gravity without and with quantum state collapses

论文作者

Juárez-Aubry, Benito A., Kay, Bernard S., Miramontes, Tonatiuh, Sudarsky, Daniel

论文摘要

我们探讨了如何针对半经典爱因斯坦 - 克莱因 - 凯琳 - 戈登方程的全球双曲线,哈达姆溶液提出初始值问题。给定一组在初始3个表面上的数据,包括时空度量标准的值及其在表面上的第3个时间派生词的表面组成,我们在表面的CCR代数上引入了“表面Hadamard”状态的概念。我们猜想,对于一组具有表面hadamard状态的经典库奇数据,满足了半经典约束方程,初始值问题将得到很好的提出。我们为半经典标量模型和半经典电动力学提供了类似的猜想。此外,在1993年受到帕克和西蒙的作品的一部分,我们将半经典重力“物理解决方案”定义为$ \ hbar $的(共同平滑)功能,均在$ \ hbar $中连续的坐标,$ \ hbar $ \ hbar = 0 $。我们猜想,对于这种解决方案,不需要指定表面度量的第二和第三次衍生物,而是由该连续性条件确定。假设这种物理溶液的初始值猜想成立,并且可以使用随机规则,从而导致量子状态倒塌在(非相互作用的)随机库奇表面上,我们讨论了与随机量子状态崩溃的半经典重力的良好性。我们还讨论了两个近似物理半经典解决方案的概念(无论有没有崩溃):即订购$ \ hbar $的解决方案(Parker and Simon于1993年首次讨论)和订购$ \ hbar^0 $的解决方案。我们指出,后者不需要较高的衍生术语或Hadamard减法,但是命令$​​ \ hbar^0 $ semiclassical Gravity是一种与能够结合量子干扰现象的经典一般相对论的独特理论。

We explore how the initial value problem may be formulated for globally hyperbolic, Hadamard, solutions of the semiclassical Einstein-Klein-Gordon equations. Given a set of data on an initial 3-surface, consisting of the values on the surface of a spacetime metric and its first 3 time derivatives off the surface, we introduce a notion of 'surface Hadamard' state on the CCR algebra of the surface. We conjecture that, for a given such set of classical Cauchy data with a surface Hadamard state satisfying the semiclassical constraint equations, the initial value problem will be well posed. We present similar conjectures for a semiclassical scalars model and semiclassical electrodynamics. Moreover, partly inspired by work of Parker and Simon in 1993, we define semiclassical gravity `physical solutions' to be those that are (jointly smooth) functions of $\hbar$ and of coordinates continuous in $\hbar$ at $\hbar =0$. We conjecture that for such solutions the second and third time derivatives of the metric off the surface need not be specified, but rather will be determined by that continuity condition. Assuming the initial value conjecture for such physical solutions holds, and that a stochastic rule were available which leads to quantum state collapses occurring on (non-intersecting) random Cauchy surfaces, we discuss the well-posedness of semiclassical gravity with stochastic quantum state collapses. We also discuss two notions of approximate physical semiclassical solutions (both with and without collapses): Namely solutions to order $\hbar$ (first discussed by Parker and Simon in 1993) and solutions to order $\hbar^0$. We point out that the latter do not require higher derivative terms or Hadamard subtractions, but that nevertheless order $\hbar^0$ semiclassical gravity is a distinct theory from classical general relativity capable of incorporating quantum interference phenomena.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源