论文标题

从轻松到硬:多跳问题的两阶段选择器和读者回答

From Easy to Hard: Two-stage Selector and Reader for Multi-hop Question Answering

论文作者

Li, Xin-Yi, Lei, Wei-Jun, Yang, Yu-Bin

论文摘要

多跳问答(QA)是一项具有挑战性的任务,要求质量保证系统对多个文档进行复杂的推理,并提供支持事实以及确切的答案。现有的作品倾向于利用基于图的推理和问题分解来获得推理链,这不可避免地引入了系统的额外复杂性和累积错误。为了解决上述问题,我们提出了一个简单而有效的新颖框架,从易于努力到硬(FE2H),以消除分散注意力的信息并为多跳QA任务获得更好的上下文表示。受到迭代文档选择过程和人类渐进式学习习俗的启发,FE2H将文档选择器和读者都划分为两个阶段。具体来说,我们首先选择与问题最相关的文档,然后将问题与本文档一起使用其他相关文档。至于QA阶段,我们的读者首先在单跳QA数据集上进行培训,然后转移到多跳QA任务中。我们全面评估了流行的多跳QA基准HOTPOTQA的模型。实验结果表明,我们的方法在HotPotQA(干扰器设置)的排行榜中使用所有其他方法。

Multi-hop question answering (QA) is a challenging task requiring QA systems to perform complex reasoning over multiple documents and provide supporting facts together with the exact answer. Existing works tend to utilize graph-based reasoning and question decomposition to obtain the reasoning chain, which inevitably introduces additional complexity and cumulative error to the system. To address the above issue, we propose a simple yet effective novel framework, From Easy to Hard (FE2H), to remove distracting information and obtain better contextual representations for the multi-hop QA task. Inspired by the iterative document selection process and the progressive learning custom of humans, FE2H divides both the document selector and reader into two stages following an easy-to-hard manner. Specifically, we first select the document most relevant to the question and then utilize the question together with this document to select other pertinent documents. As for the QA phase, our reader is first trained on a single-hop QA dataset and then transferred into the multi-hop QA task. We comprehensively evaluate our model on the popular multi-hop QA benchmark HotpotQA. Experimental results demonstrate that our method ourperforms all other methods in the leaderboard of HotpotQA (distractor setting).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源