论文标题
野外的单视图合成,具有学识渊博的自适应多层图像
Single-View View Synthesis in the Wild with Learned Adaptive Multiplane Images
论文作者
论文摘要
本文涉及综合野外照片的新颖观点的艰巨任务。现有方法显示出有希望的结果,利用了单眼深度估计和层次深度表示的颜色镶嵌。但是,这些方法仍然有限地处理复杂的3D几何形状的场景。我们提出了一种基于多层图像(MPI)表示的新方法。为了适应野外各种场景的布局,并解决了产生高维MPI内容的困难,我们设计了一个网络结构,该网络结构由两个新型模块组成,一个用于平面深度调整,另一个用于深度感知的颜色预测。前者使用RGBD上下文功能和注意机制调整了初始平面位置。给定调整的深度值,后者通过特征掩蔽策略实现了适当的平面间相互作用,可以分别预测每个平面的颜色和密度。为了训练我们的方法,我们仅通过一种简单而有效的翘曲策略仅使用不受限制的单视图像收集来构建大规模的立体训练数据。合成数据集和真实数据集的实验表明,我们训练的模型效果很好,并取得了最新的结果。
This paper deals with the challenging task of synthesizing novel views for in-the-wild photographs. Existing methods have shown promising results leveraging monocular depth estimation and color inpainting with layered depth representations. However, these methods still have limited capability to handle scenes with complex 3D geometry. We propose a new method based on the multiplane image (MPI) representation. To accommodate diverse scene layouts in the wild and tackle the difficulty in producing high-dimensional MPI contents, we design a network structure that consists of two novel modules, one for plane depth adjustment and another for depth-aware color prediction. The former adjusts the initial plane positions using the RGBD context feature and an attention mechanism. Given adjusted depth values, the latter predicts the color and density for each plane separately with proper inter-plane interactions achieved via a feature masking strategy. To train our method, we construct large-scale stereo training data using only unconstrained single-view image collections by a simple yet effective warp-back strategy. The experiments on both synthetic and real datasets demonstrate that our trained model works remarkably well and achieves state-of-the-art results.