论文标题

基因座2.0:实时地下3D映射的鲁棒和计算有效的激光镜。

LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping

论文作者

Reinke, Andrzej, Palieri, Matteo, Morrell, Benjamin, Chang, Yun, Ebadi, Kamak, Carlone, Luca, Agha-mohammadi, Ali-akbar

论文摘要

LiDAR的探测法吸引了相当大的关注,作为在复杂的GNSS污染环境中运行的自主机器人的强大定位方法。但是,由于自动操作所需的船上计算和内存资源的局限性,在大规模环境中在异质平台上实现可靠和有效的性能仍然是一个开放的挑战。在这项工作中,我们提出了实时地下3D映射的强大且计算效率的\ LIDAR ODOMETIRY系统。 LOCUS 2.0包括一种新型的基于正态的\ Morrell {广义的迭代最接近点(GICP)}公式,该公式会减少点云对齐的计算时间,这是一种自适应素voxel网格滤波器,可保持所需的计算负载,而不管环境的几何形状以及滑动窗口映射即可接近存储器的存储器消耗。所提出的方法被证明适合在严重的计算和记忆约束下部署在参与大规模探索的异质机器人平台上。我们展示了Locus 2.0,这是Costar团队在DARPA地下挑战赛中进入各种地下场景的关键要素。 我们将基因座2.0作为开源库,并在具有挑战性和大规模的地下环境中发布基于激光雷达的Odometry数据集。该数据集在多种环境中具有腿部和轮式平台,包括雾,灰尘,黑暗和几何归化环境,总计$ 11〜h $操作以及$ 16〜公里的距离。

Lidar odometry has attracted considerable attention as a robust localization method for autonomous robots operating in complex GNSS-denied environments. However, achieving reliable and efficient performance on heterogeneous platforms in large-scale environments remains an open challenge due to the limitations of onboard computation and memory resources needed for autonomous operation. In this work, we present LOCUS 2.0, a robust and computationally-efficient \lidar odometry system for real-time underground 3D mapping. LOCUS 2.0 includes a novel normals-based \morrell{Generalized Iterative Closest Point (GICP)} formulation that reduces the computation time of point cloud alignment, an adaptive voxel grid filter that maintains the desired computation load regardless of the environment's geometry, and a sliding-window map approach that bounds the memory consumption. The proposed approach is shown to be suitable to be deployed on heterogeneous robotic platforms involved in large-scale explorations under severe computation and memory constraints. We demonstrate LOCUS 2.0, a key element of the CoSTAR team's entry in the DARPA Subterranean Challenge, across various underground scenarios. We release LOCUS 2.0 as an open-source library and also release a \lidar-based odometry dataset in challenging and large-scale underground environments. The dataset features legged and wheeled platforms in multiple environments including fog, dust, darkness, and geometrically degenerate surroundings with a total of $11~h$ of operations and $16~km$ of distance traveled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源