论文标题
在寒冷天气条件下强大的3D物体检测
Robust 3D Object Detection in Cold Weather Conditions
论文作者
论文摘要
不利天气条件可能会对基于激光雷达的对象探测器产生负面影响。在这项工作中,我们专注于在寒冷天气条件下的车辆气体排气凝结现象。这种日常效果会影响对象大小,取向并引入幽灵对象检测的估计,从而损害了最先进的对象探测器的可靠性。我们建议通过使用数据增强和新颖的培训损失项来解决此问题。为了有效地训练深层神经网络,需要大量标记的数据。如果天气不利,此过程可能非常费力且昂贵。我们分为两个步骤解决此问题:首先,我们基于3D表面重建和采样提出了一种气体排气数据生成方法,该方法使我们能够从一小群标记的数据池中生成大量的气体排气云。其次,我们引入了一个点云增强过程,该过程可用于在良好天气条件下记录的数据集中添加气体排气。最后,我们制定了一个新的训练损失项,该训练损失项利用增强点云通过惩罚包括噪声的预测来增加对象检测的鲁棒性。与其他作品相反,我们的方法可以与基于网格的检测器和基于点的检测器一起使用。此外,由于我们的方法不需要任何网络体系结构更改,因此推理时间保持不变。实际数据的实验结果表明,我们提出的方法大大提高了对气体排气和嘈杂数据的鲁棒性。
Adverse weather conditions can negatively affect LiDAR-based object detectors. In this work, we focus on the phenomenon of vehicle gas exhaust condensation in cold weather conditions. This everyday effect can influence the estimation of object sizes, orientations and introduce ghost object detections, compromising the reliability of the state of the art object detectors. We propose to solve this problem by using data augmentation and a novel training loss term. To effectively train deep neural networks, a large set of labeled data is needed. In case of adverse weather conditions, this process can be extremely laborious and expensive. We address this issue in two steps: First, we present a gas exhaust data generation method based on 3D surface reconstruction and sampling which allows us to generate large sets of gas exhaust clouds from a small pool of labeled data. Second, we introduce a point cloud augmentation process that can be used to add gas exhaust to datasets recorded in good weather conditions. Finally, we formulate a new training loss term that leverages the augmented point cloud to increase object detection robustness by penalizing predictions that include noise. In contrast to other works, our method can be used with both grid-based and point-based detectors. Moreover, since our approach does not require any network architecture changes, inference times remain unchanged. Experimental results on real data show that our proposed method greatly increases robustness to gas exhaust and noisy data.