论文标题
在CMOS兼容的硅光子过程中,RF光子过滤器的全自动现场重新配置
Fully Automatic In-Situ Reconfiguration of RF Photonic Filters in a CMOS-Compatible Silicon Photonic Process
论文作者
论文摘要
光学过滤器的自动重新配置是新型柔性RF光子接收器和软件定义的无线电(SDR)的关键。尽管硅光子学(SIP)是一个有前途的技术平台,可以实现此类接收器,过程变化和缺乏原位调谐能力,限制了在广泛可调的RF光子接收器中采用SIP过滤器。为了解决此问题,这项工作介绍了第一个“原位”自动重新配置算法,并演示了可配置的可配置的集成光过滤器,可以根据用户规格进行直接重新配置。提出的重新配置方案避免使用昂贵且笨重的设备,例如光矢量网络分析仪(OVNA),不使用仿真数据进行重新配置,减少了所需的热光音调元素的总数,并消除了几个耗时的配置步骤,如先前的艺术。这使得在现实世界的情况下,该过滤器理想的情况是用户指定过滤器中心频率,带宽,必需的拒绝和过滤器类型(Butterworth,Chebyshev等),并且无论过程,电压和温度(PVT)变化如何,都会自动配置过滤器。我们在AIM Photonics的主动SIP过程中制作了设计,并证明了我们的重新配置算法的二阶滤波器,其3DB带宽为3 GHz,2.2 dB插入损失损失和> 30 dB> 30 dB的偏置置换术,仅使用两个参考激光波长设置。由于使用CMOS兼容的SIP Foundry制造了滤光片光子积分电路(PIC),因此设计可重复且可扩展性的性能,适合于其与电子设备集成,以实现复杂的芯片尺度RF光子系统。
Automatic reconfiguration of optical filters is the key to novel flexible RF photonic receivers and Software Defined Radios (SDRs). Although silicon photonics (SiP) is a promising technology platform to realize such receivers, process variations and lack of in-situ tuning capability limits the adoption of SiP filters in widely-tunable RF photonic receivers. To address this issue, this work presents a first `in-situ' automatic reconfiguration algorithm and demonstrates a software configurable integrated optical filter that can be reconfigured on-the-fly based on user specifications. The presented reconfiguration scheme avoids the use of expensive and bulky equipment such as Optical Vector Network Analyzer (OVNA), does not use simulation data for reconfiguration, reduces the total number of thermo-optic tuning elements required and eliminates several time consuming configuration steps as in the prior art. This makes this filter ideal in a real world scenario where user specifies the filter center frequency, bandwidth, required rejection & filter type (Butterworth, Chebyshev, etc.) and the filter is automatically configured regardless of process, voltage & temperature (PVT) variations. We fabricated our design in AIM Photonics' Active SiP process and have demonstrated our reconfiguration algorithm for a second-order filter with 3dB bandwidth of 3 GHz, 2.2 dB insertion loss and >30 dB out-of-band rejection using only two reference laser wavelength settings. Since the filter photonic integrated circuit (PIC) is fabricated using a CMOS-compatible SiP foundry, the design is manufacturable with repeatable and scalable performance suited for its integration with electronics to realize complex chip-scale RF photonic systems.