论文标题

基于特征函数的回归曲线平等的强大测试

Robust tests for equality of regression curves based on characteristic functions

论文作者

Boente, Graciela, Pardo-Fernández, Juan Carlos

论文摘要

本文着重于检验无效假设的问题,即在一般的非参数同型回归模型下,几个人群的回归函数相等。众所周知,线性内核回归估计量对非典型响应敏感。这些扭曲的估计值将影响从它们构建的测试统计量,因此在测试几个回归函数的测试平等时获得的结论也可能受到影响。近年来,基于经验特征功能的测试程序的使用已显示出良好的实践特性。因此,为了提供更可靠的推论,我们构建了一个测试统计量,该统计量结合了从零假设下的稳健性更平滑的特征函数和残差。测试统计量的渐近分布是在零假设和根$ -n $连续的替代方案下研究的。进行了一项蒙特卡洛研究,以将拟议检验的有限样本行为与使用局部平均值获得的经典样本进行比较。报道的数值实验表明,基于Nadaraya-Watson估计量的有限样品的拟议方法比该方法的优点。还提供了对真实数据集的插图,并能够研究$ p $值对带宽选择的灵敏度。

This paper focuses on the problem of testing the null hypothesis that the regression functions of several populations are equal under a general nonparametric homoscedastic regression model. It is well known that linear kernel regression estimators are sensitive to atypical responses. These distorted estimates will influence the test statistic constructed from them so the conclusions obtained when testing equality of several regression functions may also be affected. In recent years, the use of testing procedures based on empirical characteristic functions has shown good practical properties. For that reason, to provide more reliable inferences, we construct a test statistic that combines characteristic functions and residuals obtained from a robust smoother under the null hypothesis. The asymptotic distribution of the test statistic is studied under the null hypothesis and under root$-n$ contiguous alternatives. A Monte Carlo study is performed to compare the finite sample behaviour of the proposed test with the classical one obtained using local averages. The reported numerical experiments show the advantage of the proposed methodology over the one based on Nadaraya-Watson estimators for finite samples. An illustration to a real data set is also provided and enables to investigate the sensitivity of the $p-$value to the bandwidth selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源