论文标题
用于监督光谱预测的电子描述符
Electronic Descriptors for Supervised Spectroscopic Predictions
论文作者
论文摘要
分子的光谱特性对于描述在紫外/Vis电磁辐射的作用下的分子反应非常重要。从量子化学界通常使用计算昂贵的AB从头算(例如多元配置SCF,耦合群集)或TDDFT方法来计算这些特性。在这项工作中,我们提出了一种(有监督的)机器学习方法,以建模有机分子的吸收光谱。已经测试过几种有监督的ML方法,例如内核岭回归(KRR),多Eccerseptron神经网妇(MLP)和卷积神经网络。仅使用几何描述符(例如库仑矩阵)被证明不足以进行准确的训练。受到TDDFT理论的启发,我们建议使用一组从低成本DFT方法获得的电子描述符:轨道能量差,占用和未居住的Kohn-Sham轨道之间的过渡偶极矩以及单声学的电荷转移特征。我们证明,借助该电子描述符和神经网络的使用,我们不仅可以预测激发态的密度,而且可以很好地估计电子激发态的吸收频谱和电荷转移特征,从而达到接近化学精度的结果(〜2 kcal/mol或〜2.1EV)。
Spectroscopic properties of molecules holds great importance for the description of the molecular response under the effect of an UV/Vis electromagnetic radiation. Computationally expensive ab initio (e.g. MultiConfigurational SCF, Coupled Cluster) or TDDFT methods are commonly used by the quantum chemistry community to compute these properties. In this work, we propose a (supervised) Machine Learning approach to model the absorption spectra of organic molecules. Several supervised ML methods have been tested such as Kernel Ridge Regression (KRR), Multiperceptron Neural Networs (MLP) and Convolutional Neural Networks. The use of only geometrical descriptors (e.g. Coulomb Matrix) proved to be insufficient for an accurate training. Inspired on the TDDFT theory, we propose to use a set of electronic descriptors obtained from low-cost DFT methods: orbital energy differences, transition dipole moment between occupied and unoccupied Kohn-Sham orbitals and charge-transfer character of mono-excitations. We demonstrate that with this electronic descriptors and the use of Neural Networks we can predict not only a density of excited states, but also getting very good estimation of the absorption spectrum and charge-transfer character of the electronic excited states, reaching results close to the chemical accuracy (~2 kcal/mol or ~0.1eV).