论文标题

信息流引导合成(完整版)

Information Flow Guided Synthesis (Full Version)

论文作者

Finkbeiner, Bernd, Metzger, Niklas, Moses, Yoram

论文摘要

组成综合依赖于发现假设的发现,即对系统其余部分的行为的限制,使组件能够实现其规范。为了避免丢失有效的解决方案,这些假设应该是实现可靠性的必要条件。但是,由于通常有许多不同的行为实现相同的规范,因此通常不存在必要的行为限制。在本文中,我们介绍了一类新的组成合成假设,我们称之为信息流假设。这样的假设捕获了分布式计算的基本方面,因为组件通常需要采取仅在其他组件中可用的信息上。因此,某些信息流的存在通常是必要的要求,而建立信息流的实际行为是不受限制的。与行为假设(即单个计算轨迹的属性)相反,信息流假设是超代理,即痕迹集的属性。我们提出了一种从系统的时间逻辑规范中自动推导信息流假设的方法。然后,我们为基于信息流假设自动合成组件实现的技术提供了一种技术。这为分布式系统的合成提供了一种新的组成方法。我们报告了使用玻舍赫珀合成工具进行的鼓励对该方法进行的首次实验。

Compositional synthesis relies on the discovery of assumptions, i.e., restrictions on the behavior of the remainder of the system that allow a component to realize its specification. In order to avoid losing valid solutions, these assumptions should be necessary conditions for realizability. However, because there are typically many different behaviors that realize the same specification, necessary behavioral restrictions often do not exist. In this paper, we introduce a new class of assumptions for compositional synthesis, which we call information flow assumptions. Such assumptions capture an essential aspect of distributed computing, because components often need to act upon information that is available only in other components. The presence of a certain flow of information is therefore often a necessary requirement, while the actual behavior that establishes the information flow is unconstrained. In contrast to behavioral assumptions, which are properties of individual computation traces, information flow assumptions are hyperproperties, i.e., properties of sets of traces. We present a method for the automatic derivation of information-flow assumptions from a temporal logic specification of the system. We then provide a technique for the automatic synthesis of component implementations based on information flow assumptions. This provides a new compositional approach to the synthesis of distributed systems. We report on encouraging first experiments with the approach, carried out with the BoSyHyper synthesis tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源