论文标题
优化联邦人重新识别的绩效:基准测试和分析
Optimizing Performance of Federated Person Re-identification: Benchmarking and Analysis
论文作者
论文摘要
越来越严格的数据隐私法规限制了人重新识别(REID),因为REID培训需要集中大量包含敏感个人信息的数据。为了解决这个问题,我们介绍了联邦人士的重新识别(FEDREID) - 在REID中实施联合学习(一种新兴的分布式培训方法)。 FedReid通过汇总从客户端到中央服务器的模型更新而不是原始数据来保留数据隐私。此外,我们通过基准分析在统计异质性下优化了FedReid的性能。我们首先构建具有增强算法,两个架构和九个具有较大差异的人的REID数据集的基准测试,以模拟现实世界的统计异质性。基准结果呈现出在统计异质性下的FedReid的见解和瓶颈,包括收敛性的挑战和大量数据集的性能较差。基于这些见解,我们提出了三种优化方法:(1)我们采用知识蒸馏来通过更好地将知识从客户转移到服务器来促进FedReid的收敛; (2)我们介绍客户端集群,以通过汇总具有相似数据分布的客户端来提高大型数据集的性能; (3)我们建议通过动态更新聚合的权重,具体取决于对客户培训的训练,以动态更新聚合的权重来提高性能。广泛的实验表明,这些方法在所有数据集上具有更好的性能,实现了令人满意的收敛性。我们认为,Fedreid将阐明在更多的计算机视觉应用程序上实施和优化联合学习。
The increasingly stringent data privacy regulations limit the development of person re-identification (ReID) because person ReID training requires centralizing an enormous amount of data that contains sensitive personal information. To address this problem, we introduce federated person re-identification (FedReID) -- implementing federated learning, an emerging distributed training method, to person ReID. FedReID preserves data privacy by aggregating model updates, instead of raw data, from clients to a central server. Furthermore, we optimize the performance of FedReID under statistical heterogeneity via benchmark analysis. We first construct a benchmark with an enhanced algorithm, two architectures, and nine person ReID datasets with large variances to simulate the real-world statistical heterogeneity. The benchmark results present insights and bottlenecks of FedReID under statistical heterogeneity, including challenges in convergence and poor performance on datasets with large volumes. Based on these insights, we propose three optimization approaches: (1) We adopt knowledge distillation to facilitate the convergence of FedReID by better transferring knowledge from clients to the server; (2) We introduce client clustering to improve the performance of large datasets by aggregating clients with similar data distributions; (3) We propose cosine distance weight to elevate performance by dynamically updating the weights for aggregation depending on how well models are trained in clients. Extensive experiments demonstrate that these approaches achieve satisfying convergence with much better performance on all datasets. We believe that FedReID will shed light on implementing and optimizing federated learning on more computer vision applications.