论文标题
关于量子几何形状和加倍问题解决的费用
Fermions on Quantum Geometry and Resolution of Doubling Problem
论文作者
论文摘要
费米昂加倍问题通过揭示费米昂和量子时空的基本离散性之间的张力来对量子重力有重要影响。在这项工作中,我们发现在循环量子重力中,涉及与晶格改进相关的状态叠加的量子几何形状为费米昂加倍问题提供了解决。我们在量子几何形状上构建和分析了fermion繁殖物,并表明在传播器中抑制了所有费米亚双倍模式。我们的结果表明,量子几何形状的叠加性质应解决费米昂和基本离散性之间的张力,并与量子重力的连续限制有关。
The fermion doubling problem has an important impact on quantum gravity, by revealing the tension between fermion and the fundamental discreteness of quantum spacetime. In this work, we discover that in Loop Quantum Gravity, the quantum geometry involving superposition of states associated with lattice refinements provides a resolution to the fermion doubling problem. We construct and analyze the fermion propagator on the quantum geometry, and we show that all fermion doubler modes are suppressed in the propagator. Our result suggests that the superposition nature of quantum geometry should resolve the tension between fermion and the fundamental discreteness, and relate to the continuum limit of quantum gravity.