论文标题
在掺杂的自旋影响三角哈伯德模型中的位置分辨可观察物
Site-resolved observables in the doped spin-imbalanced triangular Hubbard model
论文作者
论文摘要
在几何沮丧的哈伯德模型中抑制抗磁磁有序导致各种外来量子相,包括量子自旋液体和手性态。在这里,我们将重点放在最简单的沮丧晶格几何(三角形晶格)上的哈伯德模型上。由于最近在三角光学晶格中实现了超低效率原子的动机,我们通过数值链接的群集群膨胀算法研究了三角晶格哈伯德模型的特性。我们研究了Mott绝缘子的转变,找到了关键的交互作用$ U_C/T = 7.0(2)$,并使用空间的两点相关功能来探索掺杂和不平衡的系统。我们的结果表明,在先前在光学晶格中获得的超低费米子获得的温度下发生了许多有趣的特征,并且可以通过即将进行的实验访问。我们的计算将有助于超电原子量子模拟器中的温度计,并可以指导对原子三角哈伯德量子模拟器中奇异量子相的实验搜索。
The suppression of antiferromagnetic ordering in geometrically frustrated Hubbard models leads to a variety of exotic quantum phases including quantum spin liquids and chiral states. Here, we focus on the Hubbard model on one of the simplest frustrated lattice geometries, a triangular lattice. Motivated by the recent realization of ultracold fermionic atoms in triangular optical lattices, we study the properties of the triangular-lattice Hubbard model through a Numerical Linked-Cluster Expansion algorithm. We investigate the Mott insulator transition finding a critical interaction $U_c/t = 7.0(2)$ and use spatial two- and three-point correlation functions to explore doped and imbalanced systems. Our results demonstrate that many interesting features occur at temperatures previously obtained for ultracold fermions in optical lattices and are accessible by upcoming experiments. Our calculations will be helpful for thermometry in ultracold atom quantum simulators and can guide experimental searches for exotic quantum phases in atomic triangular Hubbard quantum simulators.