论文标题

量子优化算法需要多少纠缠?

How Much Entanglement Do Quantum Optimization Algorithms Require?

论文作者

Chen, Yanzhu, Zhu, Linghua, Liu, Chenxu, Mayhall, Nicholas J., Barnes, Edwin, Economou, Sophia E.

论文摘要

可以将许多经典优化问题映射到找到对角线伊斯丁汉密尔顿人的基态,为此,各种量子算法(例如量子近似优化算法(QAOA))提供了启发式方法。由于这种经典优化问题的解决方案必然是产品状态,因此尚不清楚纠缠如何影响其性能。 QAOA的自适应导数组装问题(自适应)变化通过允许在混合层中的纠缠操作来提高收敛速率,而整个电路中需要更少的CNOT门。在这项工作中,我们研究了在Autapt-QAOA执行过程中产生的纠缠。通过对加权最大切割问题的模拟,我们表明Adapt-QAOA在纠缠和解开量子位方面具有很大的灵活性。通过逐步限制这种灵活性,我们发现早期阶段的纠缠熵与后期阶段更快的收敛相吻合。相比之下,尽管标准QAOA很快在几层内产生纠缠,但它不能有效地消除多余的纠缠。我们的结果表明,纠缠在量子优化中的作用是微妙的,并为将有利特征构建为量子优化算法提供了指导。

Many classical optimization problems can be mapped to finding the ground states of diagonal Ising Hamiltonians, for which variational quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) provide heuristic methods. Because the solutions of such classical optimization problems are necessarily product states, it is unclear how entanglement affects their performance. An Adaptive Derivative-Assembled Problem-Tailored (ADAPT) variation of QAOA improves the convergence rate by allowing entangling operations in the mixer layers whereas it requires fewer CNOT gates in the entire circuit. In this work, we study the entanglement generated during the execution of ADAPT-QAOA. Through simulations of the weighted Max-Cut problem, we show that ADAPT-QAOA exhibits substantial flexibility in entangling and disentangling qubits. By incrementally restricting this flexibility, we find that a larger amount of entanglement entropy at earlier stages coincides with faster convergence at later stages. In contrast, while the standard QAOA quickly generates entanglement within a few layers, it cannot remove excess entanglement efficiently. Our results demonstrate that the role of entanglement in quantum optimization is subtle and provide guidance for building favorable features into quantum optimization algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源