论文标题

恒定曲率曲线管代码用于低延迟模拟误差校正

Constant Curvature Curve Tube Codes for Low-Latency Analog Error Correction

论文作者

Buvarp, Anders M., Taylor Jr., Robert M., Mishra, Kumar Vijay, Mili, Lamine M., Zaghloul, Amir I.

论文摘要

对未来无线系统的超级可靠和低潜伏期通信(URLLC)的最新研究激发了对短长度代码的兴趣。在这种情况下,我们分析了一类高维恒定曲率曲线代码的任意谐波带宽(BW)的扩展,以对独立连续 - alphabet均匀源的模拟误差校正。特别是,我们利用结理论的环绕函数来规定有关恒定曲线中心线的绝缘管。然后,我们在高孔内使用管子堆积密度来优化曲线参数。所得的恒定曲率曲线管(C3T)代码具有最小的潜伏期,即在BW膨胀映射下,块长度是统一的。此外,这些代码在$ 5 $ db的信噪比之内的最佳性能在理论上可以实现的最佳性能以信噪比(SNR)$ <-5 $ db的BW扩展因子$ n \ leq 10 $。此外,我们提出了一种基于神经网络的方法来解码C3T代码。我们表明,在低SNR处,基于神经网络的C3T解码器的表现优于所有$ n $的最大可能性和最小于点错误解码器。与C3T代码相比,最好的数字代码需要更高的延迟,从而证明了后者对URLLC的效用。

Recent research in ultra-reliable and low latency communications (URLLC) for future wireless systems has spurred interest in short block-length codes. In this context, we analyze arbitrary harmonic bandwidth (BW) expansions for a class of high-dimension constant curvature curve codes for analog error correction of independent continuous-alphabet uniform sources. In particular, we employ the circumradius function from knot theory to prescribe insulating tubes about the centerline of constant curvature curves. We then use tube packing density within a hypersphere to optimize the curve parameters. The resulting constant curvature curve tube (C3T) codes possess the smallest possible latency, i.e., block-length is unity under BW expansion mapping. Further, the codes perform within $5$ dB signal-to-distortion ratio of the optimal performance theoretically achievable at a signal-to-noise ratio (SNR) $< -5$ dB for BW expansion factor $n \leq 10$. Furthermore, we propose a neural-network-based method to decode C3T codes. We show that, at low SNR, the neural-network-based C3T decoder outperforms the maximum likelihood and minimum mean-squared error decoders for all $n$. The best possible digital codes require two to three orders of magnitude higher latency compared to C3T codes, thereby demonstrating the latter's utility for URLLC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源