论文标题
用于延迟反馈建模的多头在线学习
Multi-Head Online Learning for Delayed Feedback Modeling
论文作者
论文摘要
在在线广告中,预测转换的概率和价值非常重要(例如,购买)。它不仅通过显示相关广告来影响用户体验,还会影响广告客户的投资回报率和市场收入。与单击通常在印象后几分钟内发生的点击不同,预计将在很长一段时间内进行转换(例如,在线购物30天)。它构成了一个挑战,因为真正的标签仅在延迟延迟之后可用。使用不准确的标签(部分转换),或者对陈旧数据进行培训(例如,从30天前开始)。这个问题在在线学习中更为明显,该问题的重点是最新数据的现场表现。在本文中,提出了一种新颖的解决方案,以使用多头建模来应对这一挑战。与传统方法不同,它将转换直接量化为多个窗口,例如第1天,第3-7天和第8-30天。对每个窗口中的转换进行了专门训练子模型。标签新鲜度在早期模型(例如,第1天和第2天)中得到了最大保存,而在具有较长延迟的型号(例如,第8-30天)中,较晚的转换被准确地使用。显示在在线学习实验中的转换率(CVR)和每次点击值(VPC)预测中,它大大超过了已知方法的性能。最后,作为延迟反馈建模的一般方法,它可以与任何高级ML技术结合使用,以进一步提高性能。
In online advertising, it is highly important to predict the probability and the value of a conversion (e.g., a purchase). It not only impacts user experience by showing relevant ads, but also affects ROI of advertisers and revenue of marketplaces. Unlike clicks, which often occur within minutes after impressions, conversions are expected to happen over a long period of time (e.g., 30 days for online shopping). It creates a challenge, as the true labels are only available after the long delays. Either inaccurate labels (partial conversions) are used, or models are trained on stale data (e.g., from 30 days ago). The problem is more eminent in online learning, which focuses on the live performance on the latest data. In this paper, a novel solution is presented to address this challenge using multi-head modeling. Unlike traditional methods, it directly quantizes conversions into multiple windows, such as day 1, day 2, day 3-7, and day 8-30. A sub-model is trained specifically on conversions within each window. Label freshness is maximally preserved in early models (e.g., day 1 and day 2), while late conversions are accurately utilized in models with longer delays (e.g., day 8-30). It is shown to greatly exceed the performance of known methods in online learning experiments for both conversion rate (CVR) and value per click (VPC) predictions. Lastly, as a general method for delayed feedback modeling, it can be combined with any advanced ML techniques to further improve the performance.