论文标题
准对称舒伯特演算
Quasisymmetric Schubert calculus
论文作者
论文摘要
对称函数的环在代数组合学中占据了中心位置,在舒伯特微积分中起着特别值得注意的作用,在舒伯特微积分中,硕士的标准细胞分解产生了著名的Schur功能家族,共同学环由Little Wood-Richardson规则控制。在过去的50年中,准对称函数理论的类似发展,以及在列举组合,霍普夫代数,图理论,表示理论和其他领域的应用。尽管取得了如此成功,但该理论仍缺乏舒伯特演算的准对称类似物。特别是,自Lam and Pylyavskyy(2007)的工作以来,人们一直在开发“ $ K $ - 理论”的准对称函数理论类似物,因此缺乏拓扑解释。 在这里,在Baker and Richter(2008)的作品的基础上,我们将Schubert Cilculus的哲学应用于Loop Space $ω(σ(\ MathBb {C} \ Mathbb {P}^\ Infty))$通过James Readused Product提供的同型模型$ J(\ Mathbb j(\ Mathbb {c} c} $ iff)。我们描述了$ j(\ mathbb {c} \ mathbb {p}^\ infty)$的规范舒伯特细胞分解,得出了其共同体的规范基础,我们可以通过单一的列符对象明确识别。我们的构造同样适用于James减少的广义国旗品种$ g/p $的产品,我们展示了任何$ g/p $ lift的Littlewood-Richardson规则到$ h^*(j(g/p))$。 如果$ j(\ mathbb {c} \ mathbb {p}^\ infty)$带有正常投影代数品种的结构,则单元格关闭的结构或骨将产生“蜂窝$ k $ - $ - 理论” schubert基础。我们表明这是不可能的。但是,我们介绍并研究了更微妙的$ k $ - 理论舒伯特的基础。我们表征了这个$ k $ - 理论戒指,并使用明确的组合描述开发了准对称代表。
The ring of symmetric functions occupies a central place in algebraic combinatorics, with a particularly notable role in Schubert calculus, where the standard cell decompositions of Grassmannians yield the celebrated family of Schur functions and the cohomology ring is governed by Littlewood-Richardson rules. The past 50 years have seen an analogous development of quasisymmetric function theory, with applications to enumerative combinatorics, Hopf algebras, graph theory, representation theory, and other areas. Despite such successes, this theory has lacked a quasisymmetric analogue of Schubert calculus. In particular, there has been much interest, since work of Lam and Pylyavskyy (2007), in developing "$K$-theoretic" analogues of quasisymmetric function theory, for which a major obstacle has been the lack of topological interpretations. Here, building on work of Baker and Richter (2008), we apply the philosophy of Schubert calculus to the loop space $Ω(Σ(\mathbb{C}\mathbb{P}^\infty))$ through the homotopy model given by James reduced product $J(\mathbb{C}\mathbb{P}^\infty)$. We describe a canonical Schubert cell decomposition of $J(\mathbb{C}\mathbb{P}^\infty)$, yielding a canonical basis of its cohomology, which we explicitly identify with monomial quasisymmetric functions. Our constructions apply equally to James reduced products of generalized flag varieties $G/P$, and we show how Littlewood-Richardson rules for any $G/P$ lift to $H^*(J(G/P))$. If $J(\mathbb{C}\mathbb{P}^\infty)$ carried the structure of a normal projective algebraic variety, the structure sheaves of the cell closures would yield a "cellular $K$-theory" Schubert basis. We show this is impossible. Nonetheless, we introduce and study a more subtle $K$-theory Schubert basis. We characterize this $K$-theory ring and develop quasisymmetric representatives with an explicit combinatorial description.