论文标题

贪婪与基于地图的优化自适应算法,用于旁观者的随机缓解仪

Greedy versus Map-based Optimized Adaptive Algorithms for random-telegraph-noise mitigation by spectator qubits

论文作者

Tonekaboni, Behnam, Chantasri, Areeya, Song, Hongting, Liu, Yanan, Wiseman, Howard M.

论文摘要

在尽可能隔离数据的情况下,在最小的测量和控制下,仍然可以使用其他噪声探针进行降解,并且仅在需要时应用校正。由固态Qubits的情况激励,我们考虑由随机电报过程描述的两态波动器引起的噪声,而噪声探针也是Qubit,它也是一个Qubit,即所谓的观众量子(SQ)。我们构建了假设在SQ上进行投影测量值的理论模型,并在降解效果很好的制度中得出了不同测量和控制策略的性能。我们从贪婪的算法开始;也就是说,始终在不久的将来最大化数据量量相干性的策略。我们从数字上显示该算法效果很好,发现其自适应策略可以通过仅具有几个参数的简单算法来很好地近似。基于此,以及使用贝叶斯地图的分析结构,我们设计了一个参数($θ$)的算法家族。在SQ高噪声敏感性的渐近状态中,我们在分析上表明,算法的$θ$ - 家庭可以通过除数缩放率降低了数据值的分解速率,这是该灵敏度的平方。设置$θ$等于其最佳值$θ^\ star $,可为基于地图的优化自适应算法(MOAAAR)提供了优化的自适应算法。我们在分析和数字上显示,Moaaar的表现优于贪婪算法,尤其是在SQ高噪声敏感性方面。

In a scenario where data-storage qubits are kept in isolation as far as possible, with minimal measurements and controls, noise mitigation can still be done using additional noise probes, with corrections applied only when needed. Motivated by the case of solid-state qubits, we consider dephasing noise arising from a two-state fluctuator, described by random telegraph process, and a noise probe which is also a qubit, a so-called spectator qubit (SQ). We construct the theoretical model assuming projective measurements on the SQ, and derive the performance of different measurement and control strategies in the regime where the noise mitigation works well. We start with the Greedy algorithm; that is, the strategy that always maximizes the data qubit coherence in the immediate future. We show numerically that this algorithm works very well, and find that its adaptive strategy can be well approximated by a simpler algorithm with just a few parameters. Based on this, and an analytical construction using Bayesian maps, we design a one-parameter ($Θ$) family of algorithms. In the asymptotic regime of high noise-sensitivity of the SQ, we show analytically that this $Θ$-family of algorithms reduces the data qubit decoherence rate by a divisor scaling as the square of this sensitivity. Setting $Θ$ equal to its optimal value, $Θ^\star$, yields the Map-based Optimized Adaptive Algorithm for Asymptotic Regime (MOAAAR). We show, analytically and numerically, that MOAAAR outperforms the Greedy algorithm, especially in the regime of high noise sensitivity of SQ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源