论文标题

人口普查覆盖范围的小领域估计:复杂调查数据的贝叶斯分析中的案例研究

Small domain estimation of census coverage: A case study in Bayesian analysis of complex survey data

论文作者

Elleouet, Joane S., Graham, Patrick, Kondratev, Nikolai, Morgan, Abby K., Green, Rebecca M.

论文摘要

许多国家进行了一项完整的人口普查调查,以报告官方人口统计。由于没有人口普查调查达到100%的缓解率,因此通常进行和分析的次数调查(PES)以评估人口普查覆盖范围,并根据地理区域和人口统计学属性进行官方人口估计。考虑到通常很小的PE,在所需分解水平上的直接估计是不可行的。通过采样重量调整的基于设计的估计是一种常用的方法,但是当调查无响应模式无法充分记录并且人口基准无法获得时,难以实施。我们通过应用于新西兰PES的完全基于模型的贝叶斯方法来克服这些局限性。尽管已经描述了贝叶斯治疗复杂调查的理论,但单个级别贝叶斯模型在复杂调查数据中发表的应用仍然很少。我们通过对2018年人口普查和PES调查的案例研究提供了这样的应用。我们实施了一个多级模型,该模型可以说明PE的复杂设计。然后,我们说明混合的后验预测检查和交叉验证如何有助于模型构建和模型选择。最后,我们讨论了对模型和潜在解决方案的潜在方法学改进,以减轻两项调查之间的依赖性。

Many countries conduct a full census survey to report official population statistics. As no census survey ever achieves 100 per cent response rate, a post-enumeration survey (PES) is usually conducted and analysed to assess census coverage and produce official population estimates by geographic area and demographic attributes. Considering the usually small size of PES, direct estimation at the desired level of disaggregation is not feasible. Design-based estimation with sampling weight adjustment is a commonly used method but is difficult to implement when survey non-response patterns cannot be fully documented and population benchmarks are not available. We overcome these limitations with a fully model-based Bayesian approach applied to the New Zealand PES. Although theory for the Bayesian treatment of complex surveys has been described, published applications of individual level Bayesian models for complex survey data remain scarce. We provide such an application through a case study of the 2018 census and PES surveys. We implement a multilevel model that accounts for the complex design of PES. We then illustrate how mixed posterior predictive checking and cross-validation can assist with model building and model selection. Finally, we discuss potential methodological improvements to the model and potential solutions to mitigate dependence between the two surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源