论文标题
用于在线图问题的输入预测的通用误差度量
A Universal Error Measure for Input Predictions Applied to Online Graph Problems
论文作者
论文摘要
我们引入了一种新的措施,以量化输入预测中的误差。该错误是基于适当定义的超图中的最低成本超盖盖,并提供了一个通用模板,我们适用于在线图形问题。该措施捕获由于缺乏预测请求以及未预测的实际请求而导致的错误;因此,预测和实际输入可以是任意大小的。我们为在线列表模型(例如Steiner Tree和设施位置)中的先前研究的网络设计问题获得了精致的性能保证。此外,我们启动了针对在线路由问题的学习增强算法的研究,例如在线旅行销售人员问题和在线拨号问题,其中(运输)请求随着时间的推移(在线时间模型)到达。我们提供了一个一般的算法框架,并给出了错误依赖性的性能界限,在给出准确的预测时,以略有增加的最差预测,在给定任意质量的预测时,以略有增加的最差预测,以略有增加的最差预测来改善。
We introduce a novel measure for quantifying the error in input predictions. The error is based on a minimum-cost hyperedge cover in a suitably defined hypergraph and provides a general template which we apply to online graph problems. The measure captures errors due to absent predicted requests as well as unpredicted actual requests; hence, predicted and actual inputs can be of arbitrary size. We achieve refined performance guarantees for previously studied network design problems in the online-list model, such as Steiner tree and facility location. Further, we initiate the study of learning-augmented algorithms for online routing problems, such as the online traveling salesperson problem and the online dial-a-ride problem, where (transportation) requests arrive over time (online-time model). We provide a general algorithmic framework and we give error-dependent performance bounds that improve upon known worst-case barriers, when given accurate predictions, at the cost of slightly increased worst-case bounds when given predictions of arbitrary quality.