论文标题
结构无偏向医学图像分割的对抗模型
Structure Unbiased Adversarial Model for Medical Image Segmentation
论文作者
论文摘要
生成模型已在图像识别中广泛提出,以生成更多图像,其中分布与真实图像相似。它通常会引入一个歧视网络,以将真实数据与生成的数据区分开。这样的模型利用了一个歧视网络,该网络负责以区分样式从目标数据集中包含的数据传输的数据。但是,这样做的网络着重于强度分布的差异,并可能忽略数据集之间的结构差异。在本文中,我们制定了一个新的图像到图像翻译问题,以确保生成的图像的结构类似于目标数据集中的图像。我们提出了一个简单但功能强大的结构不稳定的对抗(SUA)网络,该网络在执行图像分割时构成了训练和测试集之间的强度和结构差异。它由空间变换块组成,然后是强度分布渲染模块。提出了空间变换块来减少两个图像之间的结构差距,还产生了一个反变形字段,以使最终的分段图像背面扭曲。然后,强度分布渲染模块将变形结构呈现到具有目标强度分布的图像。实验结果表明,所提出的SUA方法具有在多个数据集之间传递强度分布和结构含量的能力。
Generative models have been widely proposed in image recognition to generate more images where the distribution is similar to that of the real ones. It often introduces a discriminator network to differentiate the real data from the generated ones. Such models utilise a discriminator network tasked with differentiating style transferred data from data contained in the target dataset. However in doing so the network focuses on discrepancies in the intensity distribution and may overlook structural differences between the datasets. In this paper we formulate a new image-to-image translation problem to ensure that the structure of the generated images is similar to that in the target dataset. We propose a simple, yet powerful Structure-Unbiased Adversarial (SUA) network which accounts for both intensity and structural differences between the training and test sets when performing image segmentation. It consists of a spatial transformation block followed by an intensity distribution rendering module. The spatial transformation block is proposed to reduce the structure gap between the two images, and also produce an inverse deformation field to warp the final segmented image back. The intensity distribution rendering module then renders the deformed structure to an image with the target intensity distribution. Experimental results show that the proposed SUA method has the capability to transfer both intensity distribution and structural content between multiple datasets.