论文标题
使用贝叶斯优化的快速量子校准,用于非马克维亚环境的状态参数估计器
Fast Quantum Calibration using Bayesian Optimization with State Parameter Estimator for Non-Markovian Environment
论文作者
论文摘要
随着量子系统的大小和复杂性的扩展,手动量子量表的表征和门栅极优化将是一个不可衡量且耗时的企业。由于量子处理器对外部环境非常敏感,因此必须仔细校准物理Qubits,并且控制硬件参数在操作过程中缓慢漂移,从而影响门的忠诚度。当前,现有的校准技术需要复杂而冗长的测量,以独立控制每个门的不同参数,并且对于大量子系统不可占。因此,需要具有所需功能的全自动协议来加快校准过程。本文旨在提出从实际的物理实验环境的连续弱测量结果下对超导QUBIT的单品校准。我们提出了一个量子状态的实时最佳估计量,该量子态利用弱测量值和贝叶斯优化来找到用于门设计的最佳控制脉冲。我们的数值结果表明,校准过程显着降低,获得了高栅极保真度。使用提出的估计器,我们估计了有或没有测量噪声的Qubit状态,并且量子状态和估计量状态之间的估计误差小于0.02。使用此设置,我们驱动了一个近似的PI脉冲,最终保真度为0.9928。这表明我们提出的策略在测量和环境噪声的存在上是可靠的,也可以适用于许多其他量子计算技术的校准。
As quantum systems expand in size and complexity, manual qubit characterization and gate optimization will be a non-scalable and time-consuming venture. Physical qubits have to be carefully calibrated because quantum processors are very sensitive to the external environment, with control hardware parameters slowly drifting during operation, affecting gate fidelity. Currently, existing calibration techniques require complex and lengthy measurements to independently control the different parameters of each gate and are unscalable to large quantum systems. Therefore, fully automated protocols with the desired functionalities are required to speed up the calibration process. This paper aims to propose single-qubit calibration of superconducting qubits under continuous weak measurements from a real physical experimental settings point of view. We propose a real-time optimal estimator of qubit states, which utilizes weak measurements and Bayesian optimization to find the optimal control pulses for gate design. Our numerical results demonstrate a significant reduction in the calibration process, obtaining a high gate fidelity. Using the proposed estimator we estimated the qubit state with and without measurement noise and the estimation error between the qubit state and the estimator state is less than 0.02. With this setup, we drive an approximated pi pulse with final fidelity of 0.9928. This shows that our proposed strategy is robust against the presence of measurement and environmental noise and can also be applicable for the calibration of many other quantum computation technologies.