论文标题
原始黑洞被星星捕获,并引起低质量恒星黑色孔
Primordial black holes capture by stars and induced collapse to low-mass stellar black holes
论文作者
论文摘要
小行星质量窗口中的原始黑洞($ \ sim 10^{ - 16} $至$ 10^{ - 11} \ rm m _ {\ odot} $),这可能构成所有暗物质,当它们以足够低的速度为止时,可以被星星捕获。在恒星形成期间被放置在绑定的轨道上后,如果轨道恰好是高度偏心的,它们可以反复越过恒星,并因动态摩擦而放慢速度并最终进入恒星核心。当第一颗恒星形成红移$ z \ sim 20 $时,这些捕获的速率在高暗物质密度和低速分散的光环中最高。我们计算低金属性星的捕获率,$ 0.3 $至$ 1 \ rm m _ {\ odot} $,发现在第一个矮人星系中形成的这些恒星中的很大一部分将捕获一个原始的黑洞,然后通过积聚到可能接近恒星质量的质量来生长。我们表明,原始黑洞的捕获率不取决于它们在这个小行星质量窗口上的质量,并且不应受到外部潮汐扰动的影响。这些低质量恒星黑洞今天可以以低金属性,旧的二进制系统的形式发现,以银河系的方式,其中包含幸存的低质量主序列恒星或白矮人,或通过与另一个紧凑型物体合并中发出的重力波。众所周知,标准恒星进化论中没有任何机制形成的黑洞小于chandrasekhar质量,因此检测低质量黑洞从根本上影响了我们对恒星进化,暗物质和早期宇宙的理解。
Primordial black holes in the asteroid-mass window ($\sim 10^{-16}$ to $10^{-11} \rm M_{\odot}$), which might constitute all the dark matter, can be captured by stars when they traverse them at low enough velocity. After being placed on a bound orbit during star formation, they can repeatedly cross the star if the orbit happens to be highly eccentric, slow down by dynamical friction and end up in the stellar core. The rate of these captures is highest in halos of high dark matter density and low velocity dispersion, when the first stars form at redshift $z \sim 20$. We compute this capture rate for low-metallicity stars of $0.3$ to $1\rm M_{\odot}$, and find that a high fraction of these stars formed in the first dwarf galaxies would capture a primordial black hole, which would then grow by accretion up to a mass that may be close to the total star mass. We show the capture rate of primordial black holes does not depend on their mass over this asteroid-mass window, and should not be much affected by external tidal perturbations. These low-mass stellar black holes could be discovered today in low-metallicity, old binary systems in the Milky Way containing a surviving low-mass main-sequence star or a white dwarf, or via gravitational waves emitted in a merger with another compact object. No mechanisms in standard stellar evolution theory are known to form black holes of less than a Chandrasekhar mass, so detecting a low-mass black hole would fundamentally impact our understanding of stellar evolution, dark matter and the early Universe.