论文标题

通过多视图增强来改善子图表的学习

Improving Subgraph Representation Learning via Multi-View Augmentation

论文作者

Shen, Yili, Liu, Xiao, Ju, Cheng-Wei, Yan, Jiaxu, Yi, Jun, Lin, Zhou, Guan, Hui

论文摘要

基于图形神经网络(GNN)的子图表学习在科学进步中表现出广泛的应用,例如对分子结构 - 特质关系和集体细胞功能的预测。特别是,图表增强技术在改善基于图和基于节点的分类任务方面显示出令人鼓舞的结果。尽管如此,在现有的基于GNN的子图表示学习研究中很少探索它们。在这项研究中,我们开发了一种新型的多视图增强机制,以改善子图表示学习模型,从而改善下游预测任务的准确性。我们的增强技术创建了多种子图的变体,并将这些变体嵌入原始图中,以提高训练效率,可扩展性和准确性。几个现实世界和生理数据集的基准实验证明了我们在子图表学习中提出的多视图增强技术的优越性。

Subgraph representation learning based on Graph Neural Network (GNN) has exhibited broad applications in scientific advancements, such as predictions of molecular structure-property relationships and collective cellular function. In particular, graph augmentation techniques have shown promising results in improving graph-based and node-based classification tasks. Still, they have rarely been explored in the existing GNN-based subgraph representation learning studies. In this study, we develop a novel multi-view augmentation mechanism to improve subgraph representation learning models and thus the accuracy of downstream prediction tasks. Our augmentation technique creates multiple variants of subgraphs and embeds these variants into the original graph to achieve highly improved training efficiency, scalability, and accuracy. Benchmark experiments on several real-world biological and physiological datasets demonstrate the superiority of our proposed multi-view augmentation techniques in subgraph representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源