论文标题
单个全景图的虚拟演出的语义监督外观分解
Semantically Supervised Appearance Decomposition for Virtual Staging from a Single Panorama
论文作者
论文摘要
我们描述了一种新颖的方法,将一个空的室内环境的单个全景分解为四个外观组成部分:镜面,直射的阳光,弥漫性和扩散环境,没有直射的阳光。我们的系统是通过自动生成的语义图(带有地板,墙,天花板,灯,窗户和门标签)来弱监督的,这些图在透视图上显示了成功,并使用传输学习对全景进行了培训,而无需任何进一步的注释。从语义图提取物获得的粗略信息监督的基于GAN的方法是镜面反射和地板和墙壁上的直射阳光区域。这些照明效果通过类似的基于GAN的方法和语义感知的介入步骤消除。外观分解可实现多种应用,包括太阳方向估计,虚拟家具插入,地板材料更换和太阳方向变化,为虚拟房屋分期提供了有效的工具。我们证明了方法对空房屋的全景数据集的有效性。
We describe a novel approach to decompose a single panorama of an empty indoor environment into four appearance components: specular, direct sunlight, diffuse and diffuse ambient without direct sunlight. Our system is weakly supervised by automatically generated semantic maps (with floor, wall, ceiling, lamp, window and door labels) that have shown success on perspective views and are trained for panoramas using transfer learning without any further annotations. A GAN-based approach supervised by coarse information obtained from the semantic map extracts specular reflection and direct sunlight regions on the floor and walls. These lighting effects are removed via a similar GAN-based approach and a semantic-aware inpainting step. The appearance decomposition enables multiple applications including sun direction estimation, virtual furniture insertion, floor material replacement, and sun direction change, providing an effective tool for virtual home staging. We demonstrate the effectiveness of our approach on a large and recently released dataset of panoramas of empty homes.